Effect of burner geometry on the morphology and propagation of supercritical, CO2-diluted oxy-methane flames in obstructed channels

Authors

  • Samuel Abimbola Ogunfuye Department of Mechanical and Aerospace Engineering , West Virginia University
  • V'yacheslav Akkerman Department of Mechanical and Aerospace Engineering , West Virginia University
  • Abdulafeez Adebiyi Department of Mechanical and Aerospace Engineering , West Virginia University
  • Konstantin Kemenov Symplectic Research Inc., Atlanta,

DOI:

https://doi.org/10.55632/pwvas.v92i1.709

Keywords:

supercritical carbon dioxide (sCO2) combustion, obstacle spacing, blockage ratio, Bychkov tube oxy-methane combustion

Abstract

High global demands for energy have promoted innovative research tailored towards exploring novel, more efficient and cleaner power generation. Advanced combustors are a forefront technology being developed in achieving these next-generation energy systems, which can be adapted towards current thermal power plants. One of such promising advanced energy systems technology is utilization of supercritical carbon dioxide (sCO2)-diluted oxy-methane combustion. The present study therefore scrutinizes the effect of the burner geometry, in particular, the role of the blockage ratio alpha in the propagation and morphology of a CO2-diluted oxy-methane flame at a supercritical condition in an obstructed channel with 40% CO2-dilution. The computational simulation of the fully-compressible supercritical reacting flow equations is carried out with various blockage ratios,  alpha= 1/2, 1/3, 2/3, at constant pressure and temperature. It is observed that with an increase in α, the flame propagates exponentially matching earlier works at atmospheric conditions. Also, flame acceleration increases with the channel width. For the α = 2/3 case, high magnitude vortices and shock waves were observed thereby collapsing the concave flame structure observed for α = 1/2 and 1/3 cases.

Author Biography

Samuel Abimbola Ogunfuye, Department of Mechanical and Aerospace Engineering , West Virginia University

Mechanical and Aerospace Engineering - Graduate Student

Downloads

Published

2020-04-29

How to Cite

Ogunfuye, S. A., Akkerman, V., Adebiyi, A., & Kemenov, K. (2020). Effect of burner geometry on the morphology and propagation of supercritical, CO2-diluted oxy-methane flames in obstructed channels. Proceedings of the West Virginia Academy of Science, 92(1). https://doi.org/10.55632/pwvas.v92i1.709

Issue

Section

Meeting Abstracts-Oral