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Abstract: Noether’s theorem is used to identify a conservation law for the 
quantum mechanical pointed weak energy. Under this law the pointed weak 
energy is a constant of the motion and leads to simple expressions for the 
correlation amplitude between and probability for an associated evolving 
quantum state and the state at a previous initial time. 
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Introduction  

     A complex valued energy has recently been defined 
for pre-and post-selected (PPS) quantum systems and 
studied from a theoretical perspective. Because the 
mathematical form of this quantity is the same as that 
of a weak value (Aharonov and Vaidman 1990; 
Aharonov et al 1986 ; Aharonov et al 1988) it is called 
the weak energy. It has been shown that the weak 
energy of an evolving PPS system can be expressed as 
a simple homogeneous Lagrangian energy function in 
terms of a Pancharatnam (P) phase 𝜒 and a Fubini-
Study (FS) distance 𝑠 associated with the PPS states. 
Additional properties associated with weak energy can 
be found in (Parks 2014).  
     The notion of pointed weak energy was introduced 
in (Parks 2006). This is the weak energy related to the 
evolution of a quantum state relative to its fixed initial 
state. In (Parks 2006) several of its properties, e.g. a 
U(1) gauge potential, integral invariants, etc., were 
identified and discussed and in (Parks 2007) its 
relationship to quantum geometric phase was 
established.  Similar to  weak energy, pointed weak 
energy is also expressed as a simple homogeneous 
Lagrangian in terms of 𝜒 and 𝑠. It is denoted ℒ, called 
the PFS Lagrangian (to distinguish it from the weak 
energy Lagrangian), and defines the PFS functional  
 

𝐼 = &ℒ	𝑑𝑡	. 

 
     In this paper it is shown that 𝐼 is both an extremal 
and divergence invariant under infinitesimal 
transformations of time 𝑡, 𝜒, and 𝑠. This enables 
application of Noether’s theorem (see Appendix) to 
provide a conservation law, the physical consequences 
of which are briefly discussed. 
 
Preliminaries 
 
     Let |𝜓!⟩ be a distinguished state in a Hilbert space 
ℋ with projective space ℘ comprised of all the rays of 
ℋ (a ray is an equivalence class [𝜓] of states of |𝜓⟩ in 
ℋ which differ only in phase) and with projection map 
П:ℋ → ℘ such that |𝜓⟩ ⟼ [𝜓]. Furthermore, let 
ℋ⊬ = {|𝜓⟩ ∈ ℋ: ⟨𝜓|𝜓!⟩ ≠ 0} and define the pointed 
map 𝛹!:ℋ⊬ → 𝑅 × 𝑅 by 
 

𝛹!(|𝜓⟩) = A𝑎𝑟𝑔
⟨𝜓|𝜓!⟩
|⟨𝜓|𝜓!⟩|

, 2G1 − |⟨𝜓|𝜓!⟩|#J 

 
																							= (𝜒, 𝑠), 
 
where 𝑅 is the set of real numbers and 𝜒 ∈ [0,2𝜋) is the 
Pancharatnam phase defined by 
 

𝑒$% =
⟨𝜓|𝜓!⟩
|⟨𝜓|𝜓!⟩|

	.																												(1) 
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The quantity  
 

	𝑠 = 2G1 − |⟨𝜓|𝜓!⟩|# 	 ∈ [0,2)														(2) 
 
is the generalized Fubini-Study metric distance 
separating [𝜓] and [𝜓!] in ℘. The PFS configuration 
space associated with any distinguished state |𝜓!⟩ is the 
image set 𝑖𝑚	𝛹! = [0,2𝜋) × [0,2) ⊂ 𝑅 × 𝑅 with origin 
𝛹!(|𝜓!⟩) = (0,0). The quantity |⟨𝜓|𝜓!⟩|# is the 
correlation probability between states |𝜓⟩ and |𝜓!⟩. It 
is assumed that the evolution of a time dependent state 
|𝜓(𝑡)⟩ occurs continuously, smoothly, and entirely 
within ℋ⊬, with |𝜓!⟩ = |𝜓(0)⟩.  
     The pointed weak energy 𝑊!(𝑡) for the normalized 
state |𝜓(𝑡)⟩ at time 𝑡 is defined by 
 

																		𝑊!(𝑡) =
Q𝜓(𝑡)R𝐻TR𝜓(0)U
⟨𝜓(𝑡)|𝜓(0)⟩  

 
																																= 𝑅𝑒	𝑊!(𝑡) + 𝑖	𝐼𝑚	𝑊!(𝑡),									(3) 
 
where 

𝑖ħ
𝑑|𝜓(𝑡)⟩
𝑑𝑡 = 𝐻T|𝜓(𝑡)⟩	. 

 
It is readily determined from (1) and (2) that 
 

𝑅𝑒	𝑊!(𝑡) = ħ
𝑑𝜒(𝑡)
𝑑𝑡  

and 

𝐼𝑚	𝑊!(𝑡) = ħ Y
𝑠(𝑡)

4 − 𝑠#(𝑡)[ A
𝑑𝑠(𝑡)
𝑑𝑡 J	. 

 
Upon substitution of these equalities into (3), the 
pointed weak energy assumes the form of the PFS 
Lagrangian  
 

ℒ ≡ ħ
𝑑𝜒(𝑡)
𝑑𝑡 + 𝑖ħ Y

𝑠(𝑡)
4 − 𝑠#(𝑡)[ A

𝑑𝑠(𝑡)
𝑑𝑡 J							(4) 

 
with  
 

ħ =
𝜕ℒ

𝜕(𝑑𝜒(𝑡) 𝑑𝑡⁄ ) ≡ 𝑝%																						(5) 

 
as the generalized momentum conjugate to 𝜒 and 
 

𝑖ħ Y
𝑠(𝑡)

4 − 𝑠#(𝑡)[ =
𝜕ℒ

𝜕(𝑑𝑠(𝑡) 𝑑𝑡⁄ ) ≡ 𝑝&									(6) 

 
as the generalized momentum conjugate to 𝑠. 
 
 

The Divergence Invariance of I 
 
     The divergence invariance of 𝐼 requires that, under 
the infinitesimal transformations 
 

b
𝑡' = 𝑡 + 𝜖𝛾

𝜒'(𝑡) = 𝜒(𝑡) + 𝜖𝛼
𝑠'(𝑡) = 𝑠(𝑡) + 𝜖𝛽

	,																							(7) 

 
with generators 𝛼, 𝛽, and 𝛾 and infinitesimally small 
number 𝜖, there must exist a function 𝑓 ≡ 𝑓(𝑡) such 
that  

ℒ' A
𝑑𝑡'

𝑑𝑡 J − ℒ = 𝜖
𝑑𝑓
𝑑𝑡 + 𝑂

(𝜖(),			𝑟 > 1, (8) 

where 

											ℒ' ≡ ħ
𝑑𝜒'(𝑡')
𝑑𝑡' + 𝑖ħ

𝑠'(𝑡')
4 − 𝑠'(𝑡')# 	

𝑑𝑠'(𝑡')
𝑑𝑡' .					(9) 

 
     To determine if 𝐼 is divergence invariant first 
substitute the transformations in (7) into 𝜒'(𝑡')	and 
𝑠'(𝑡') to find: 
 

𝜒'(𝑡') = 𝜒'(𝑡 + 𝜖𝛾) = 𝜒'(𝑡) +
𝑑𝜒'(𝑡')
𝑑𝑡' m

!
𝜖𝛾 + 𝒪(𝜖#) 

or 
𝜒'(𝑡') = 𝜒(𝑡) + 𝜖(𝛼 + 𝜂𝛾) + 𝒪(𝜖#), 

 

𝑠'(𝑡') = 𝑠'(𝑡 + 𝜖𝛾) = 𝑠'(𝑡) +
𝑑𝑠'(𝑡')
𝑑𝑡' m

!
𝜖𝛾 + 𝒪(𝜖#) 

or 
𝑠'(𝑡') = 𝑠(𝑡) + 𝜖(𝛽 + 𝜎𝛾) + 𝒪(𝜖#), 

 
 
𝑑𝜒'(𝑡')
𝑑𝑡' =

𝑑𝜒'(𝑡')
𝑑𝑡

𝑑𝑡
𝑑𝑡' 

								 

						= A
𝑑𝜒(𝑡)
𝑑𝑡 + 𝜖 q

𝑑𝛼
𝑑𝑡 +

𝑑(𝜂𝛾)
𝑑𝑡 rJ

𝑑𝑡
𝑑𝑡' + 𝑂

(𝜖#)	, (10) 

 
and similarly 
 
𝑑𝑠'(𝑡')
𝑑𝑡' = A

𝑑𝑠(𝑡)
𝑑𝑡 + 𝜖 q

𝑑𝛽
𝑑𝑡 +

𝑑(𝜎𝛾)
𝑑𝑡 rJ

𝑑𝑡
𝑑𝑡' 

 
+𝑂(𝜖#).			(11) 

 
Here the notation 𝑋|! means 𝑋 evaluated at 𝜖 = 0, i.e. 
at 𝑡' = 𝑡. Also, 
 

𝑠'(𝑡')
4 − 𝑠'(𝑡')# =

𝑠(𝑡) + 𝜖{𝛽 + 𝜎𝛾} + 𝑂(𝜖#)

4 − t𝑠(𝑡) + 𝜖{𝛽 + 𝜎𝛾} + 𝑂(𝜖#)u#
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	=
𝑠(𝑡) + 𝜖{𝛽 + 𝜎𝛾} + 𝑂(𝜖#)

4 − t𝑠(𝑡) + 𝜖{𝛽 + 𝜎𝛾} + 𝑂(𝜖#)u#
						 

=
𝑠(𝑡) + 𝜖{𝛽 + 𝜎𝛾} + 𝑂(𝜖#)

(4 − 𝑠(𝑡)#) v1 − 𝜖 2𝑠(𝑡){𝛽 + 𝜎𝛾}4 − 𝑠(𝑡)# w + 𝑂(𝜖#)
 

 
which – after expanding the second factor in the 
denominator in series to first order in 𝜖 – becomes 
 
𝑠'(𝑡')

4 − 𝑠'(𝑡')# =
𝑠(𝑡)

4 − 𝑠(𝑡)# + 𝜖
{𝛽 + 𝜎𝛾} Y

4 + 𝑠(𝑡)#

(4 − 𝑠(𝑡)#)#[ 

 
+𝑂(𝜖#). 

     Substituting these results into (9) yields 
 

ℒ'
𝑑𝑡'

𝑑𝑡 = ħA
𝑑𝜒(𝑡)
𝑑𝑡 + 𝜖 q

𝑑𝛼
𝑑𝑡 +

𝑑(𝜂𝛾)
𝑑𝑡 rJ 

 

																																+𝑖ħA
𝑠(𝑡)

4 − 𝑠(𝑡)#
𝑑𝑠(𝑡)
𝑑𝑡

+ 𝜖{𝛽 + 𝜎𝛾} Y
4 + 𝑠(𝑡)#

(4 − 𝑠(𝑡)#)#[
𝑑𝑠(𝑡)
𝑑𝑡

+ 𝜖 q
𝑑𝛽
𝑑𝑡 +

𝑑(𝜎𝛾)
𝑑𝑡 r

𝑠(𝑡)
4 − 𝑠(𝑡)#J 

 
                               + 𝑂t𝜖2u 
 
or 
 

ℒ'
𝑑𝑡'

𝑑𝑡 − ℒ = 𝜖ħ Y
𝑑𝛼
𝑑𝑡 +

𝑑(𝜂𝛾)
𝑑𝑡

+ 𝑖 Aq
𝑑𝛽
𝑑𝑡 +

𝑑(𝜎𝛾)
𝑑𝑡 r

𝑠(𝑡)
4 − 𝑠(𝑡)#J

+ 𝑖{𝛽 + 𝜎𝛾} Y
4 + 𝑠(𝑡)#

(4 − 𝑠(𝑡)#)#[
𝑑𝑠(𝑡)
𝑑𝑡 [

+ 𝑂(𝜖#)	. 
 
Finally, comparing the last equation with (8) it is found 
that 
 
𝑑𝑓
𝑑𝑡 = 

				ħ

⎣
⎢
⎢
⎢
⎡𝑑𝛼
𝑑𝑡 +

𝑑(𝜂𝛾)
𝑑𝑡 + 𝑖 Aq

𝑑𝛽
𝑑𝑡 +

𝑑(𝜎𝛾)
𝑑𝑡 r

𝑠(𝑡)
4 − 𝑠(𝑡)#J	

+𝑖{𝛽 + 𝜎𝛾} A
4 + 𝑠(𝑡)#

(4 − 𝑠(𝑡)#)#J
𝑑𝑠(𝑡)
𝑑𝑡 ⎦

⎥
⎥
⎥
⎤
. (12) 

 
Consequently, 𝐼 is divergence invariant. 
      
 

     Here (12) can be rewritten as 
 
𝑑𝑓
𝑑𝑡 = ħ

𝑑
𝑑𝑡 Y

(𝛼 + 𝜂𝛾) + 𝑖(𝛽 + 𝜎𝛾)A
𝑠(𝑡)

4 − 𝑠(𝑡)#J[ 

 
so that 
 

𝑓 = ħ Y(𝛼 + 𝜂𝛾) + 𝑖(𝛽 + 𝜎𝛾)A
𝑠(𝑡)

4 − 𝑠(𝑡)#J[ + 𝐶
', 

 
or– in terms of conjugate momenta – 
 

𝑓 = 𝑝%𝛼 + ħ𝜂𝛾 + (𝛽 + 𝜎𝛾)𝑝& + 𝐶', 
 
where 𝐶' is a complex valued integration constant. 
 
A Conservation Law 
 
     Not only is 𝐼 divergence invariant, it is also an 
extremal because ℒ is a Lagrangian and necessarily 
satisfies the following Euler-Lagrange equations: 
 

𝜕ℒ
𝜕𝜒(𝑡) =

𝑑
𝑑𝑡 v

𝜕ℒ
𝜕(𝑑𝜒(𝑡) 𝑑𝑡⁄ )w 

and 
𝜕ℒ
𝜕𝑠(𝑡) =

𝑑
𝑑𝑡 v

𝜕ℒ
𝜕(𝑑𝑠(𝑡) 𝑑𝑡)⁄ w. 

 
Because 𝐼 is both divergence invariant and extremal, 
Noether’s theorem can be used to provide a 
conservation law. This theorem states that if 𝐼 is both 
extremal and divergence invariant, then (for this 
system) the conservation law 
 

𝑝%𝛼 + 𝑝&𝛽 − 𝑓 = 𝐶'' 
 
holds, where 𝐶''	 is a complex valued constant. This 
becomes, after substitution for 𝑓 and simplification,  
 

ħ𝜂 = 𝑅𝑒	𝐶 ≡ 𝑎																								(13) 
and 
 

𝜎𝑝& = 𝑖	𝐼𝑚	𝐶 ≡ 𝑖	𝑏,																			(14) 
 
where 𝐶 = −(𝐶'' + 𝐶') ≡ 𝑎 + 	𝑖	𝑏. Here 𝛾 is set to 
unity and use is made of the facts that ħ𝜂 and 𝜎 are real 
valued and 𝑝& is pure imaginary. 
     From (10) and (11) it is found that 
 

𝜂 ≡
𝑑𝜒'(𝑡')
𝑑𝑡' m

!
=
𝑑𝜒(𝑡)
𝑑𝑡  

and 
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𝜎 ≡
𝑑𝑠'(𝑡')
𝑑𝑡' m

!
=
𝑑𝑠(𝑡)
𝑑𝑡  

 
in which case (13) and (14) become 
 

ħ
𝑑𝜒(𝑡)
𝑑𝑡 = 𝑎																															(15) 

and 

ħ
𝑠(𝑡)

4 − 𝑠(𝑡)#
𝑑𝑠(𝑡)
𝑑𝑡 = 𝑏	.																			(16) 

 
Thus, the conservation law implies the special case that 
ℒ is a constant of the motion, i.e. 
 

ℒ = 𝑎 + 𝑖	𝑏. 
 
Physical Consequences 
 
      Recall that, in general, ℒ defines a multiplier that 
relates correlation amplitudes in time according to 
(Parks 2006) 

⟨𝜓(𝑡)|𝜓(0)⟩ = 𝑒𝑥𝑝A
𝑖
ħ& ℒ	𝑑𝑡'

)

!
J ⟨𝜓(0)|𝜓(0)⟩ 

 

= 𝑒𝑥𝑝 A
𝑖
ħ	& ℒ	𝑑𝑡'

)

!
J	 

 
since ⟨𝜓(0)|𝜓(0)⟩ = 1. Because the conservation law 
requires ℒ to be a constant of the motion, the last 
equation becomes 
 

⟨𝜓(𝑡)|𝜓(0)⟩ = 𝑒𝑥𝑝 �
𝑖
ħ	
(𝑎 + 𝑖	𝑏)	𝑡� 

 
(the integration constants are necessarily zero to satisfy 
the boundary condition ⟨𝜓(0)|𝜓(0)⟩ = 1). Thus, the 
conservation law provides this simple expression for 
the correlation amplitude between an evolving state and 
the state at a previous initial time. It follows that the 
associated time dependent correlation probability is 
 

																				|⟨𝜓(𝑡)|𝜓(0)⟩|# = 𝑒𝑥𝑝 �−
2𝑏
ħ 𝑡�.												(17) 

 
     When ℒ is a constant of the motion the evolution of 
|𝜓⟩ relative to |𝜓!⟩ in PFS configuration space can be 
determined by integrating (15) and (16) with respect to 
𝑡 to obtain 

𝜒(𝑡) =
𝑎𝑡
ħ  

and 

−
ħ
2	ln Y1 − v

𝑠(𝑡)
2 w

#

[ = 𝑏𝑡 

 
(the integration constants must vanish to satisfy the 
above boundary condition). The last equation can be 
solved for 𝑠(𝑡) to yield 
 

𝑠(𝑡) = 2�1 − exp	{−
2𝑏
ħ 𝑡}	. 

 
This equation is in complete agreement with (2) when 
the exponential term in this equation is identified with 
the correlation probability in (17). 
 
Closing Remarks 
 
     Noether’s theorem and the associated ancillary 
theory developed in (Neuenschwander 2011) has been 
employed to formally derive the results found in this 
paper. Although these results were previously 
introduced by inspection without the benefit of 
Noether’s theorem in (Parks 2003), this paper is a 
reaffirmation of the power and utility of Noether’s 
theorem. 
 
Appendix 
 
    The version of Noether’s theorem used in this paper 
can be stated in terms of 𝑠, �̇�, and �̇� as: 
 
If the functional 
 

𝐼 = &ℒ(𝑠(𝑡), �̇� (𝑡), �̇�(𝑡))𝑑𝑡 ≡ &ℒ 𝑑𝑡 

 
is an extremal and if under the infinitesimal 
transformation 
 

𝑡' = 𝑡 + 𝜖𝛾 
 

𝜒'(𝑡) = 𝜒(𝑡) + 𝜖𝛼 
 

𝑠'(𝑡) = 𝑠(𝑡) + 𝜖𝛽 
 
there exists a function 𝑓 ≡ 𝑓(𝑡) such that 
 

ℒ' A
𝑑𝑡'

𝑑𝑡 J − ℒ = 𝜖
𝑑𝑓
𝑑𝑡 + 𝑂

(𝜖(),			𝑟 > 1, 

 
where 
 

ℒ' ≡ ħ
𝑑𝜒'(𝑡')
𝑑𝑡' + 𝑖ħ

𝑠'(𝑡')
4 − 𝑠'(𝑡')# 	

𝑑𝑠'(𝑡')
𝑑𝑡' , 

 
i.e. I is divergence invariant, then the conservation law 
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𝑝%𝛼 + 𝑝&𝛽 − �𝑝%�̇� + 𝑝&�̇� − ℒ� − 𝑓 = 𝐶'' 
or 

𝑝%𝛼 + 𝑝&𝛽 − 𝑓 = 𝐶'' 
 
holds. Here 𝐶''is a complex valued constant and use is 
made of the fact that ℒ = 𝑝%�̇� + 𝑝&�̇�. 
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