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Abstract: Quantum mechanical weak values and their measurement have 

been a focus of theoretical, experimental, and applied research for more 

than two decades. The concept of PT  symmetry was also introduced into 

quantum mechanics during this time. This paper defines the notion of a 

weak value measurement pointer Hamiltonian and establishes equivalences 

between its Dirac symmetries, its PT symmetries, its eigenvalues, and the 

associated weak value. The affect of these symmetries upon measurement 

pointer observables is also identified.       
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Introduction  

The weak value 𝐴𝑤  of a quantum mechanical 

observable 𝐴 was introduced a quarter century ago 

(Aharonov et al 1986; Aharonov et al 1988; 

Aharonov and Vaidman 1990). This quantity is the 

statistical result of a standard quantum measurement 

performed upon a pre- and postselected (PPS) 

ensemble of quantum systems when the interaction 

between the measurement apparatus and each system 

is sufficiently weak, that is, when it is a weak 

measurement. Unlike a standard strong measurement 

of 𝐴, which significantly disturbs the measured 

system (i.e., it “collapses” the wave function), a 

weak measurement of 𝐴 for a PPS system does not 

appreciably disturb the quantum system and yields 

𝐴𝑤  as the observable’s measured value. The peculiar 

nature of the virtually undisturbed quantum reality 

that exists between the boundaries defined by the 

PPS states is revealed by the eccentric characteristics 

of 𝐴𝑤 , namely that 𝐴𝑤 can be complex valued and 

that the real part Re 𝐴𝑤 of 𝐴𝑤 can lie far outside the 

eigenvalue spectral limits of 𝐴̂ (this effect is called 

“weak value amplification”). 

While the interpretation of weak values remains 

somewhat controversial, experiments have verified 

several of the interesting unusual properties 

predicted by weak value theory (Ritchie et al 1991; 

Parks et al 1998; Resch et al 2004; Wang et al 2006; 

Hosten and Kwiat 2008; Yokota et al 2009; Dixon et 

al 2009; Parks and Spence 2016; Spence and Parks 

2017). 

 Canonical quantum mechanics is based upon 

fundamental postulates, one of which requires that a 

quantum system’s Hamiltonian operator 𝐻 is Dirac 

symmetric, i.e. it is Hermitian, and obeys the 

symmetry condition 𝐻 = 𝐻† (“†” indicates adjoint).  

This means that the eigenvalues of 𝐻 are real valued. 

𝐻 is anti-Dirac symmetric if 𝐻† = −𝐻. 

 However, it has been shown (Bender and 

Boettcher 1999; Bender et al 1999) that certain non-

Hermitian Hamiltonians, i.e., those for which 𝐻† ≠

±𝐻 and which generally have complex eigenvalues, 

will possess real valued eigenspectra if they exhibit 

the PT  symmetry condition PT 𝐻 = 𝐻. Here P is the 

parity operator which changes the sign of both the 

position and momentum operators in 𝐻 according to 
 

𝑞̂ → −𝑞̂,       𝑝̂ → −𝑝̂                        (1)                    

 



Parks,  Proc West Virginia Acad Sci 2024, 96 (1). Pages 1-7. 

 

 

 

PWVAS   2 

and T  is the time reversal operator which leaves the 

position operator unchanged, changes the sign of the 

momentum operator, and performs complex 

conjugation in 𝐻 according to 

 

𝑞̂ → 𝑞̂,        𝑝̂ → −𝑝̂, 𝑖 → −𝑖             (2) 

 

(𝑖 = √−1).  𝐻̂ is anti- PT symmetric when PT 𝐻 =

−𝐻. 
         PT symmetric systems are known to occur in a 

variety of physical settings (Longhi 2010; 

Chtchelkatchev et al 2012; Hang et al 2013; Wu et al 

2019) and have served as the basis for new devices 

(Benisty et al 2011) and novel metamaterials (Feng et 

al 2012).  

      A recently reported protocol for measuring PT 

symmetric non-Hermitian Hamiltonians using weak 

values (Pati et al 2015) has established an experimental 

connection between weak values and PT symmetric 

non-Hermitian Hamiltonians. This paper extends this 

connection by defining a special generally non-

Hermitian weak value measurement pointer 

Hamiltonian 𝐻𝑤 and establishes equivalences between 

its Dirac symmetries, its PT symmetries, its 

eigenvalues, and its associated weak value. These 

symmetries are shown to manifest physically in the 

mean values and variances of measurement pointer 

observables. 

 

Quantum Measurements and Weak Values 

 

Standard Quantum Measurements 

 

      Before continuing, it is instructive to provide – 

in some detail - an overview of quantum 

measurement, weak measurement, and weak value 

theory. Weak measurements arise in the von 

Neumann description of an ideal quantum 

measurement at time 𝑡0 of a time-independent 

observable 𝐴 that describes a quantum system in an 

initial fixed preselected state |𝜓𝑖⟩ = ∑ 𝑐𝑗𝐽 |𝑎𝑗⟩ at 𝑡0, 

where the set 𝐽 indexes the eigenstates |𝑎𝑗⟩ of the 

Hermitian operator 𝐴̂ associated with the observable 

𝐴 (𝑎𝑗 is the eigenvalue satisfying the eigen equation 

𝐴̂ |𝑎𝑗⟩ = 𝑎𝑗|𝑎𝑗⟩). The Hamiltonian for the interaction 

between the measurement apparatus and the quantum 

system at 𝑡0 is 

 

𝐻 = 𝛾(𝑡)𝐴̂𝑝.̂                              (3) 

 

Here 𝛾(𝑡) = 𝛾𝛿(𝑡 − 𝑡0), where 𝛿(𝑡 − 𝑡0) is the Dirac 

delta function, defines the impulsive measurement 

interaction strength 𝛾 at 𝑡0 and 𝑝̂ is the momentum 

operator for the pointer of the measurement 

apparatus which is in the initial state |𝜙⟩. Let 𝑞̂ be 

the pointer’s position operator that is conjugate to 𝑝̂. 

      Prior to the measurement, the preselected 

quantum system and the pointer are in the tensor 

product state ⌊𝜓𝑖⟩|𝜙⟩. Immediately following the 

measurement, the combined system is in the state 

 

|𝛷⟩ = 𝑒−𝑖
ħ ∫ 𝐻̂𝑑𝑡|𝜓𝑖⟩|𝜙⟩ = ∑ 𝑐𝑗

𝐽
𝑒−𝑖

ħ𝛾𝑎𝑗𝑝|𝑎𝑗⟩|𝜙⟩, 

 

where use has been made of the fact that 

∫ 𝐻𝑑𝑡 = 𝛾𝐴̂𝑝̂ (recall that ∫ 𝛾𝛿(𝑡 − 𝑡0)𝑑𝑡 = 𝛾). The 

exponential factor in this equation is the translation 

operator 𝑆̂(𝛾𝑎𝑗) for |𝜙⟩ in its 𝑞 representation. It is 

defined by the action 

 

⟨𝑞|𝑆̂(𝛾𝑎𝑗)|𝜙⟩ = ⟨𝑞 − 𝛾𝑎𝑗|𝜙⟩ ≡ 𝜙(𝑞 − 𝛾𝑎𝑗) 

 

which translates the pointer’s wavefunction over a 

distance 𝛾𝑎𝑗 parallel to the 𝑞 axis. The 𝑞 

representation of the combined system and pointer 

state is 

 

⟨𝑞|𝛷⟩ = ∑ 𝑐𝑗
𝐽

⟨𝑞|𝑆̂(𝛾𝑎𝑗)|𝜙⟩|𝑎𝑗⟩. 

 

      For a standard quantum measurement, the 

measurement interaction is strong, the quantum 

system is appreciably disturbed and its state 

“collapses” to an eigenstate |𝑎𝑛⟩ leaving the pointer 

in the state ⟨𝑞|𝑆̂(𝛾𝑎𝑛)|𝜙⟩ with probability |𝑐𝑛|2. 

Strong measurements of an ensemble of identically 

prepared systems yield 𝛾⟨𝜓𝑖|𝐴̂|𝜓𝑖⟩ as the centroid of 

the pointer probability distribution  

 

|⟨𝑞|𝛷⟩|2 = ∑ |𝑐𝑗|
2

𝐽
|⟨𝑞|𝑆̂(𝛾𝑎𝑗)|𝜙⟩|

2
           (4) 

 

with the mean value  ⟨𝜓𝑖|𝐴̂|𝜓𝑖⟩ of 𝐴̂  as the measured 

value of 𝐴. 
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Weak Measurements 

 

      A weak measurement of 𝐴 occurs when the 

interaction strength 𝛾 is sufficiently small so that the 

system is essentially undisturbed and the pointer’s 

position uncertainty ∆𝑞 is much larger than 𝐴̂’s 

eigenvalue separation. In this case, (4) is the 

superposition of broad overlapping |⟨𝑞|𝑆̂(𝛾𝑎𝑗)|𝜙⟩|
2
 

terms. Although a single measurement provides little 

information about 𝐴, many repetitions allow the 

centroid of (4) to be determined to any desired 

accuracy. 

 

Postselected Weak Measurements 

 

      If a system state |𝜓𝑓⟩ = ∑ 𝑐𝑗
′

𝐽 |𝑎𝑗⟩, ⟨𝜓𝑓|𝜓𝑖⟩ ≠ 0, at 

𝑡0 is postselected after a weak measurement is 

performed then the resulting pointer state is 

 

|𝛹⟩ = ⟨𝜓𝑓|𝛷⟩ = ∑ 𝑐𝑗
′∗

𝐽
𝑐𝑗𝑆̂(𝛾𝑎𝑗)|𝜙⟩ 

 

(“*” denotes complex conjugate). Since  

 

𝑆̂(𝛾𝑎𝑗) ≡ 𝑒−𝑖
ħ𝛾𝑎𝑗𝑝 = ∑

[−
𝑖𝛾𝑎𝑗𝑝̂

ħ ]
𝑚

𝑚!

∞

𝑚=0

, 

 

then 

|𝛹⟩ = ∑ 𝑐𝑗
′∗

𝐽
𝑐𝑗 {1̂ −

𝑖

ħ
𝛾𝐴𝑤𝑝̂

+ ∑
[−

𝑖𝛾𝑝̂
ħ ]

𝑚

𝑚!

∞

𝑚=2

(𝐴𝑚)𝑤} |𝜙⟩

≈ {∑ 𝑐𝑗
′∗𝑐𝑗

𝐽
} 𝑒−𝑖

ħ𝛾𝐴𝑤𝑝̂|𝜙⟩             (5) 

 

in which case 

 

|𝛹⟩ ≈ ⟨𝜓𝑓|𝜓𝑖⟩𝑆̂(𝛾𝐴𝑤)|𝜙⟩,                     

where 

 

𝑆̂(𝛾𝐴𝑤) = 𝑒−𝑖
ħ

𝛾𝐴𝑤𝑝,                           

 

 so that  

 

|⟨𝑞|𝛹⟩|2 ≈ |⟨𝜓𝑓|𝜓𝑖⟩|
2

|⟨𝑞|𝑆̂(𝛾𝐴𝑤)|𝜙⟩|
2

.       (6) 

 

Weak Values and the Weakness Conditions 

 

      In (5) 

 

(𝐴𝑚)𝑤 =
∑ 𝑐𝑗

′∗𝑐𝑗𝑎𝑗
𝑚

𝐽

∑ 𝑐𝑗
′∗

𝐽 𝑐𝑗
=

⟨𝜓𝑓|𝐴̂𝑚|𝜓𝑖⟩

⟨𝜓𝑓|𝜓𝑖⟩
, 

 

with the weak value 𝐴𝑤  of 𝐴 defined by  

 

𝐴𝑤 ≡ (𝐴1)𝑤 =
⟨𝜓𝑓|𝐴̂|𝜓𝑖⟩

⟨𝜓𝑓|𝜓𝑖⟩
. 

 

      It is obvious from this expression that 𝐴𝑤  is in 

general a complex valued quantity that can be 

calculated directly from theory when the PPS states 

and 𝐴̂ are known. Observe that if 𝐴𝑤  and ⟨𝑞|𝜙⟩ are 

real valued, then (6) corresponds to a broad pointer 

position distribution with a single peak at ⟨𝛹|𝑞̂|𝛹⟩ =

𝛾𝑅𝑒 𝐴𝑤  with 𝑅𝑒 𝐴𝑤  as the measured weak value of 

𝐴. This occurs when both of the following 

inequalities, i.e. the weakness conditions, which 

relate 𝛾, 𝐴𝑤 , and the pointer momentum uncertainty 

∆𝑝, are satisfied (Parks and Spence 2017) 

 

∆𝑝 ≪
ħ

𝛾
|𝐴𝑤|−1 and ∆𝑝 ≪ min

(𝑚=2,3,⋯ )

ħ

𝛾
|

𝐴𝑤

(𝐴𝑚)𝑤
|

(𝑚−1)−1

. 

 

The Weak Value Measurement Pointer 

Hamiltonian 

 
      Observe that a new Hamiltonian can be formed  

from (3) by simply replacing 𝐴̂ with 𝐴𝑤  to obtain the 

weak value measurement pointer Hamiltonian 

 

𝐻𝑤 = 𝛾(𝑡)𝐴𝑤𝑝̂. 

 

This Hamiltonian is strictly associated with the 

dynamics of the pointer (as indicated by 𝑝̂) at 

measurement time 𝑡0 (because it is constrained by 

𝛿(𝑡 − 𝑡0)) after postselection (as required by 𝐴𝑤). It 

is the symmetries of this Hamiltonian that are found 

below. Note that because  𝛾(𝑡) is real valued and 𝐴𝑤  

is generally complex valued, then 𝐻𝑤 is generally a 

non-Hermitian operator because 

 

𝐻𝑤
† = (𝛾(𝑡)𝐴𝑤𝑝̂)† = 𝛾(𝑡)𝐴𝑤

∗ 𝑝̂† = 𝛾(𝑡)𝐴𝑤
∗ 𝑝̂ ≠ 𝐻𝑤 . 
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      It is interesting to determine the eigenspectrum 

and eigenfunctions of 𝐻𝑤. Since 𝐻𝑤 is effectively the 

momentum operator scaled by 𝛾(𝑡)𝐴𝑤, it is expected 

that its eigenstates are momentum eigenstates and its 

eigenvalues are scaled momentum values.  

      To see that this is the case, consider the 

associated eigen equation 

 

𝐻𝑤|𝜑⟩ = |𝜑⟩. 

 

In the 𝑞-representation this becomes 

 

⟨𝑞|𝐻𝑤|𝜑⟩ = ⟨𝑞|𝜑⟩ 

or 

𝛾(𝑡)𝐴𝑤⟨𝑞|𝑝̂|𝜑⟩ = ⟨𝑞|𝜑⟩. 

 

Applying the identities ⟨𝑞|𝜑⟩ = 𝜑(𝑞) and ⟨𝑞|𝑝̂|𝜑⟩ =
ħ

𝑖

𝑑𝜑(𝑞)

𝑑𝑞
 to this yields the differential equation 

 
ħ

𝑖
𝛾(𝑡)𝐴𝑤 

𝑑𝜑(𝑞)

𝑑𝑞
= 𝜑(𝑞). 

 

      The solution to this equation is the momentum 

eigenstate 

 

𝜑(𝑞) =
1

√2𝜋ħ
𝑒

𝑖
ħ 𝑞𝑝 

 

which - by inspection - yields the eigenvalue 

 

 = 𝛾(𝑡)𝐴𝑤𝑝. 

 

Because 𝛾(𝑡) and 𝑝 are real valued and 𝐴𝑤  is 

generally complex valued,  is also a generally 

complex valued quantity. As above, since  depends 

upon 𝛿(𝑡 − 𝑡0), it is the eigenvalue at measurement 

time 𝑡0. 

 

Symmetry and Anti-Symmetry 

Equivalents Theorems 
 

      Symmetry equivalents of the weak value 

measurement pointer Hamiltonian are identified in 

the following theorem: 

 

Theorem 1. The following statements are 

equivalent: 

 

(1) 𝐴𝑤  is real valued; 

(2) 𝐻𝑤 is Dirac symmetric (Hermitian); 

(3) 𝐻𝑤 is PT  symmetric; 

(4)   𝑖𝑠 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑑. 

 

Proof. 

(1) ⇔ (2): 𝐴𝑤  real ⇔ 𝐴𝑤
∗ = 𝐴𝑤  ⇔ 𝛾(𝑡)𝐴𝑤

∗ 𝑝̂ =

𝛾(𝑡)𝐴𝑤𝑝̂ ⇔ 𝐻𝑤
† = 𝐻𝑤. 

(2) ⇔ (3): 𝐻𝑤 = 𝐻𝑤
† ⇔ 𝛾(𝑡)𝐴𝑤𝑝̂ = 𝛾(𝑡)𝐴𝑤

∗ (−(−𝑝̂)) 

⇔ 𝐻𝑤 = PT   𝐻𝑤 . 
(3) ⇔ (4): 𝐻𝑤 =PT  𝐻𝑤 ⇔ 𝛾(𝑡)𝐴𝑤𝑝̂ =

 𝛾(𝑡)𝐴𝑤
∗ (−(−𝑝̂)) ⇔ 𝛾(𝑡)𝐴𝑤𝑝̂ = 𝛾(𝑡)𝐴𝑤

∗ 𝑝̂ ⇔

 𝛾(𝑡)𝐴𝑤𝑝̂|𝜑⟩ = 𝛾(𝑡)𝐴𝑤
∗ 𝑝̂|𝜑⟩ ⇔ 𝛾(𝑡)𝐴𝑤⟨𝑞|𝑝̂|𝜑⟩ =

 𝛾(𝑡)𝐴𝑤
∗ ⟨𝑞|𝑝̂|𝜑⟩  ⇔ 𝛾(𝑡)𝐴𝑤  

ħ

𝑖

𝑑𝜑(𝑞)

𝑑𝑞
=

𝛾(𝑡)𝐴𝑤
∗  

ħ

𝑖

𝑑𝜑(𝑞)

𝑑𝑞
⇔ 𝛾(𝑡)𝐴𝑤𝑝𝜑(𝑞) = 𝛾(𝑡)𝐴𝑤

∗ 𝑝𝜑(𝑞)  ⇔

𝛾(𝑡)𝐴𝑤𝑝 = 𝛾(𝑡)𝐴𝑤
∗ 𝑝 ⇔   = ∗ ⇔  is real valued. 

(4) ⇔ (1):  real ⇔   = ∗ ⇔ 𝛾(𝑡)𝐴𝑤𝑝 =

𝛾(𝑡)𝐴𝑤
∗ 𝑝 ⇔ 𝐴𝑤 = 𝐴𝑤

∗ ⇔ 𝐴𝑤  is real.   ∎ 

 

When any item in Theorem 1 holds, then 𝐻𝑤 is said 

to be symmetric.     

      The anti-symmetric equivalents of the weak 

value measurement pointer Hamiltonian are 

delineated in the next theorem: 

 

Theorem 2. The following statements are 

equivalent: 

 

(1) 𝐴𝑤 is pure imaginary; 

(2) 𝐻𝑤 is anti-Dirac symmetric (anti-Hermitian); 

(3) 𝐻𝑤 is anti-PT  symmetric; 

(4)  𝑖𝑠 𝑝𝑢𝑟𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦. 

 

Proof. 

(1) ⇔ (2): 𝐴𝑤 pure imaginary ⇔ 𝐴𝑤
∗ = −𝐴𝑤 ⇔ 

𝛾(𝑡)𝐴𝑤
∗ 𝑝̂ = −𝛾(𝑡)𝐴𝑤𝑝̂ ⇔ 𝐻𝑤

† = −𝐻𝑤. 

(2) ⇔ (3): − 𝐻𝑤 = 𝐻𝑤
† ⇔ −𝛾(𝑡)𝐴𝑤𝑝̂ = 

𝛾(𝑡)𝐴𝑤
∗ (−(−𝑝̂)) ⇔ − 𝐻𝑤 = PT  𝐻𝑤 . 

(3) ⇔ (4): 𝐻𝑤 = −PT  𝐻𝑤 ⇔ 𝛾(𝑡)𝐴𝑤𝑝̂ =

− 𝛾(𝑡)𝐴𝑤
∗ (−(−𝑝̂)) ⇔ 𝛾(𝑡)𝐴𝑤𝑝̂ = −𝛾(𝑡)𝐴𝑤

∗ 𝑝̂ ⇔

 𝛾(𝑡)𝐴𝑤𝑝̂|𝜑⟩ = −𝛾(𝑡)𝐴𝑤
∗ 𝑝̂|𝜑⟩  ⇔ 𝛾(𝑡)𝐴𝑤⟨𝑞|𝑝̂|𝜑⟩ =

 −𝛾(𝑡)𝐴𝑤
∗ ⟨𝑞|𝑝̂|𝜑⟩  ⇔ 𝛾(𝑡)𝐴𝑤  

ħ

𝑖

𝑑𝜑(𝑞)

𝑑𝑞
=

−𝛾(𝑡)𝐴𝑤
∗  

ħ

𝑖

𝑑𝜑(𝑞)

𝑑𝑞
⇔ 𝛾(𝑡)𝐴𝑤𝑝𝜑(𝑞) =

−𝛾(𝑡)𝐴𝑤
∗ 𝑝𝜑(𝑞) ⇔ 𝛾(𝑡)𝐴𝑤𝑝 = −𝛾(𝑡)𝐴𝑤

∗ 𝑝  ⇔   =

−∗ ⇔   is pure imaginary. 
(4) ⇔ (1):  pure imaginary ⇔   = −∗ ⇔
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𝛾(𝑡)𝐴𝑤𝑝 = −𝛾(𝑡)𝐴𝑤
∗ 𝑝 ⇔ 𝐴𝑤 = −𝐴𝑤

∗ ⇔

𝐴𝑤  is pure imginary.   ∎ 

 

When any item in Theorem 2 holds, then 𝐻𝑤 is said 

to be anti-symmetric. 

      Note that in the above proofs “⇔” means “if, and 

only if” and use is made of the fact that 𝑝̂† = 𝑝̂.  

 

Affect of 𝑯̂𝒘 Symmetries and Anti-

Symmetries Upon Pointer Observables 
 

      The general results previously reported in the 

literature (Josza 2007; Parks and Gray 2014) are used 

here to show how the symmetries and anti-

symmetries of 𝐻𝑤 affect measured pointer 

observables after a weak value measurement of an 

observable 𝐴. Let 𝑂̂ be the operator associated with a 

pointer observable 𝑂. After a weak value 

measurement of 𝐴, the mean value and variance of 𝑂̂ 

are - in general - given by  

 

⟨𝛹|𝑂̂|𝛹⟩ = ⟨𝜙|𝑂̂|𝜙⟩ − 𝑖 (
𝛾

ħ
) 𝑅𝑒 𝐴𝑤⟨𝜙|[𝑂̂, 𝑝̂]|𝜙⟩

+ (
𝛾

ħ
)  𝐼𝑚 𝐴𝑤(⟨𝜙|{𝑂̂, 𝑝̂}|𝜙⟩

− 2⟨𝜙|𝑂̂|𝜙⟩⟨𝜙|𝑝̂|𝜙⟩)                     (7) 

and 

∆𝛹
2 𝑂 = ∆𝜙

2 𝑂 − 𝑖 (
𝛾

ħ
) 𝑅𝑒 𝐴𝑤  𝐹(𝑂̂)  

+ (
𝛾

ħ
)  𝐼𝑚 𝐴𝑤  𝐺(𝑂̂),                       (8) 

 

respectively. Here, ∆𝑌
2 𝑂 is the variance of 𝑂̂ for 

pointer state 𝑌 = 𝛹, 𝜙; 

 

𝐹(𝑂̂) = ⟨𝜙|[𝑂̂2, 𝑝̂]|𝜙⟩ − 2⟨𝜙|𝑂̂|𝜙⟩⟨𝜙|[𝑂̂, 𝑝̂]|𝜙⟩; 

 

𝐺(𝑂̂) = ⟨𝜙|{𝑂̂2, 𝑝̂}|𝜙⟩ − 2⟨𝜙|𝑂̂|𝜙⟩⟨𝜙|{𝑂̂, 𝑝̂}|𝜙⟩

− 2⟨𝜙|𝑝̂|𝜙⟩ (∆𝜙
2 𝑂 − ⟨𝜙|𝑂̂|𝜙⟩

2
) ; 

 

[𝑋̂, 𝑝̂] = (𝑋̂𝑝̂ − 𝑝̂𝑋̂); 

and 

{𝑋̂, 𝑝̂} = 𝑋̂𝑝̂ + 𝑝̂𝑋̂, 

 

where 𝑋̂ = 𝑂̂, 𝑂̂2. Recall that ⌊𝛹⟩ is the pointer state 

after the measurement and ⌊𝜙⟩ is the pointer state 

before the measurement.  

      Observe that when 𝐻𝑤 is symmetric (Theorem 1), 

then 𝐼𝑚 𝐴𝑤 = 0 and (7) and (8) become 

 

   ⟨𝛹|𝑂̂|𝛹⟩ = ⟨𝜙|𝑂̂|𝜙⟩ − 𝑖 (
𝛾

ħ
) 𝑅𝑒 𝐴𝑤⟨𝜙|[𝑂̂, 𝑝̂]|𝜙⟩  (9) 

 

and 

                    ∆𝛹
2 𝑂 = ∆𝜙

2 𝑂 − 𝑖 (
𝛾

ħ
) 𝑅𝑒 𝐴𝑤  𝐹(𝑂̂),         (10) 

 
respectively (obviously, in this case 𝑅𝑒 𝐴𝑤 =  𝐴𝑤), 

whereas when 𝐻̂𝑤 is anti-symmetric (Theorem 2), 

then Re 𝐴𝑤 = 0 and (7) and (8) reduce to 

 

           ⟨𝛹|𝑂̂|𝛹⟩ = ⟨𝜙|𝑂̂|𝜙⟩ +

                                       (𝛾

ħ
) 𝐼𝑚 𝐴𝑤(⟨𝜙|{𝑂̂, 𝑝̂}|𝜙⟩  −

                                                 2⟨𝜙|𝑂̂|𝜙⟩⟨𝜙|𝑝̂|𝜙⟩)     (11) 

 

and 

 

∆𝛹
2 𝑂 = ∆𝜙

2 𝑂 + (
𝛾

ħ
)  𝐼𝑚 𝐴𝑤  𝐺(𝑂̂),         (12) 

 

respectively (obviously, in this case 𝐼𝑚 𝐴𝑤 =  𝐴𝑤). 

Comparison of the differences between (9) and (11) 

and between (10) and (12) reveals the obvious 

dependence of the mean values and variances of 𝑂̂ 

upon the symmetry and anti-symmetry of 𝐻𝑤. 

      Before leaving this section, it is worth noting that 

if 𝐻𝑤 is symmetric and 𝑂̂ = 𝑞̂ (a pointer observable 

of frequent interest), then (9) becomes 

 

⟨𝛹|𝑞̂|𝛹⟩ = ⟨𝜙|𝑞̂|𝜙⟩ + 𝛾𝑅𝑒 𝐴𝑤           (13) 
 

and, because 

 

𝐹(𝑞̂) = ⟨𝜙|[𝑞̂2, 𝑝̂]|𝜙⟩ − 2⟨𝜙|𝑞̂|𝜙⟩⟨𝜙|[𝑞̂, 𝑝̂]|𝜙⟩ = 0, 

 

(10) becomes 

 

∆𝛹
2 𝑞 = ∆𝜙

2 𝑞.                          (14) 

 

Here, use is made of the facts that [𝑞̂, 𝑝̂] = 𝑖ħ and 

[𝑞̂2, 𝑝̂] = 2𝑖ħ𝑞̂. From (13) and (14) it is seen that the 

measurement shifts the pointer from its initial 

premeasurement mean position by 𝛾𝑅𝑒 𝐴𝑤 without 

changing the associated variance.  

     Recall that (13) corresponds to the weak value 

amplification effect when 𝑅𝑒 𝐴𝑤  exceeds the eigen 

value spectral limit of 𝐴̂. This effect can be used to 

shift the pointer position sufficiently far from 

⟨𝜙|𝑞̂|𝜙⟩ so that very small coupling coefficients can 
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be measured according to 

 

𝛾 =
⟨𝛹|𝑞̂|𝛹⟩ − ⟨𝜙|𝑞̂|𝜙⟩

𝑅𝑒 𝐴𝑤
 

 

when 𝑅𝑒 𝐴𝑤  can be calculated directly from theory. 

Condition (14) is especially important for this 

measurement when the initial variance can be 

“tuned” to be small. 

 

Closing Remarks 

 

      The von Neumann measurement interaction 

Hamiltonian operator was used to define a new 

Hamiltonian – the weak value measurement pointer 

Hamiltonian – 𝐻𝑤. This Hamiltonian is strictly 

associated with the dynamics of the measurement 

pointer.  

      Two theorems were developed which establish 

symmetric and anti-symmetric equivalents for 𝐻𝑤. It 

was shown that symmetric and anti-symmetric 

equivalents affect the mean values and variances of 

pointer observables in distinct and useful ways. For 

example, symmetric 𝐻̂𝑤’s can serve as weak value 

amplifiers of pointer position without increasing the 

initial pointer position variance. The utility of this 

method is an enhanced measurement accuracy of the 

values of small interaction strengths of physical 

interest which are unobtainable by other methods.  

      As a final remark, the following relationship 

between the pointer translation operator and 𝐻𝑤 is 

noted: 

𝑆̂(𝛾𝐴𝑤) = 𝑒−𝑖
ħ ∫ 𝐻̂𝑤𝑑𝑡 . 

 

This expression justifies the above claim that 𝐻𝑤 is 

strictly associated with the dynamics of the pointer. 
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