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Abstract: West Virginia, a rural Appalachian state has the second lowest 

life expectancy at birth in the USA. Multiple factors like demographic, 

socio-economic, pollution, hazard proximities, etc., are worsening the 

situation. We have developed multiple multilevel linear regression 

models with counties as the clustering variable to study the relation of 

different factors with life expectancy. Data was extracted from the EPA’s 

EJScreen and P2 EJ facility mapping tool datasets. Data covering 1,639 

census blocks across all 55 counties of the West Virginia state is 

considered. We found the model with Hazard Proximity and Exposure 

Risk variables had the best fit and it suggested that traffic proximities, 

residential lead exposure, toxic releases to discharge water, proximity to 

underground storage tanks, proximities to RMP facilities had a significant 

positive relation to lower life expectancies in West Virginia. Although not 

a significant parameter, proximity to Superfund sites was also positively 

related to lower life expectancies in West Virginia. Therefore, state- and 

federal-level policymakers should consider these hazard proximities and 

exposure risk factors while making policies related to life expectancies. 

 

Keywords: Life expectancy; Hazard proximity; Exposure risk; Pollution; 

Socio-economic; Demographic.  

 

Introduction  

Global life expectancy has been on a steady 

upward trajectory, rising from 45.51 years in 1950 to 

73.3 years in 2024, with minor periods of decline 

(UN Department of Economic and Social Affairs, 

2024). The World Health Organization (WHO) 

defines life expectancy at birth as “the average 

number of years that a newborn could expect to live 

if exposed to the sex- and age-specific death rates 

prevailing at the time of their birth, for a specific 

year, in a given country, territory, or geographic 

area” (World Health Organization, 2024). 

In the United States, the average life expectancy 

at birth is 77 years, surpassing the global average 

(Tejada-Vera et al., 2022). However, there are 

notable disparities among states, with Hawaii 

reporting the highest life expectancy at 80.7 years 

and Mississippi the lowest at 71.9 years. These 

differences are particularly pronounced in 

Appalachia, where life expectancy disparities 

compared to the rest of the U.S. have increased over 

time and are projected to grow further (Singh et al., 

2017). Among the 13 states in Appalachia, West 

Virginia stands out as the only entirely rural state and 

the one entirely situated within the Appalachian 

region. With a life expectancy of 72.8 years, West 

Virginia ranks second lowest in the nation (Tejada-

Vera et al., 2022). While literature exists on life 

expectancy trends across the United States, focused 

studies on West Virginia, which lies at the core of 

Appalachia, remain limited. Several socioeconomic 

and environmental factors can potentially influence 

the life expectancy of a given region. Poverty has 

been repeatedly associated with reduced life 



Timilsina et al, Proc West Virginia Acad Sci 2025, 97(1): pages 13-26 

 

 

 

PWVAS   14 

expectancy (Singh & Lee, 2020; Tafran et al., 2020), 

and West Virginia had the third-highest poverty rate 

in the U.S. in 2022, with 17.9% of its population 

living below the poverty line (DePietro, 2023). 

Furthermore, research has established a positive 

relationship between cancer mortality and 

carcinogenic discharges in West Virginia, 

highlighting the potential role of toxic chemical 

exposure in reducing life expectancy (Ahern et al., 

2011). Environmental factors, including pollutants 

from industrial, agricultural, transportation, and 

mining operations, also pose significant public health 

threats in the state (Garry et al., 2002; Hendryx & 

Ahern, 2008; Khuder et al., 2007; Pope III et al., 

2002; Thornton et al., 2002). Additionally, socio-

economic disparities exacerbate the health impacts of 

these environmental burdens (Northridge et al., 

2003; Schulz & Northridge, 2004). Despite these 

findings, there is a lack of comprehensive studies that 

evaluate the combined effects of demographic, socio-

economic, environmental, and hazard proximity 

factors on life expectancy in West Virginia. 

This study aims to fill this gap by examining the 

multifaceted determinants of low life expectancy in 

West Virginia.  

 

Materials and Methods 

Data Sources 

This study utilized two primary datasets from the 

United States Environmental Protection Agency 

(EPA): EJScreen and P2 EJ Facility Mapping Data 

(United States Environmental Protection Agency, 

2023a; United States Environmental Protection 

Agency, 2023b). 

The EJScreen dataset provides comprehensive 

demographic, ecological, and socio-economic 

information for census block groups across the 

United States. Key variables include total 

population, percentage of people of color, percentage 

of the population with low income, annual average 

levels of particulate matter 2.5 (PM2.5) in the air, 

proximity to hazardous waste, and other 

environmental and health-related metrics. 

The P2 EJ Facility Mapping dataset focuses on 

industrial establishments likely contributing to local 

pollution levels. It incorporates environment-related 

data specific to these facilities, leveraging 

information from multiple sources, including the 

Toxics Release Inventory, Greenhouse Gas 

Reporting Program, Water Discharge Monitoring 

Reports, Hazardous Waste Shipment Manifests, and 

the Emissions Inventory System. 

For this study, data from 1,639 census blocks 

across all 55 counties in West Virginia were 

analyzed. 

 

Description and data processing 

Table 1 shows the variables, abbreviations, 

definitions, and data sources. The dataset was 

initially organized at the census block level. Data 

processing methods were employed to aggregate 

variables accordingly to analyze county-level 

distributions. For continuous variables such as 

population, PM25, ozone levels, diesel particulate 

matter, respiratory risks, and others, the average was 

calculated across census blocks within each county. 

Similarly, averages were computed for county-level 

variables like TRI, RCRA, DMR, GHG, and NEI. 

Percentage-based variables, such as the percentage 

of people of color, limited English-speaking 

populations, low-income populations, and others, 

required additional processing. The raw values for 

each census block group were divided by their 

corresponding percentages, and these totals were 

then summed across blocks to derive county-level 

aggregates. Using these totals, percentages for each 

county were calculated. Raw values were not 

available in the dataset for the LOW_LIFE variable, 

which represents low life expectancy. Instead, 

averages of the existing data points at the census 

block level were used to calculate county-level 

values. The LOW_LIFE variable served as the 

outcome variable for this study. It is an inverse 

measure of life expectancy, with higher values 

indicating areas where life expectancy at birth is 

lower than national norms.  

The analysis employed a multilevel modeling 

approach, using census blocks as the base level 

(Level 1) and counties as the higher level (Level 2). 

Independent variables were categorized accordingly. 

Covariates were grouped into three categories to 

understand the effects of different types of variables 

on LOW_LIFE. The first category, Demographic and 

Socio-Economic Variables, included predictors such 

as POP, CLR, LING, L_INC, and EDU. The second 

category, Pollution and Health Risk Variables, 

consisted of factors related to pollutants and health 

risks, such as PM2.5, PMDSL, RSEI_AIR, and NEI. 

The third category, Hazard Proximity, and Exposure 
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Risk Variables included proximity-based measures 

such as PTRAF, PHWF, and UST, reflecting 

environmental exposure risks. 

Table 1. Variables used in the study 

Variable Abbreviation Definition Source 

Outcome variable 

LIFEEXPPCT LOW_LIFE It is the inverse of normalized life expectancy calculated as (1- (life expectancy/ national max 

life expectancy). The area with lower life expectancy has higher values and vice versa 

EJScreen 

Grouping variable 

CNTY_NAME CNTY It represents the name of the counties in which the block groups lie. EJScreen 

Demographic and Socio-economic variables 

ACSTOTPOP POP It is the total population of the individual block group. EJScreen 

PEOPCOLORPCT CLR It is the percentage of all the people who identify as a race other than non-Hispanic white. EJScreen 

LINGISOPCT LING It is the percentage of households where no one aged 14 or above can speak English. EJScreen 

UNDER5PCT U_5 It is the percentage of the population whose age is below 5 years EJScreen 

OVER64PCT O_64 It is the percentage of the population whose age is above 65 years EJScreen 

LOWINCPCT L_INC It is the percentage of the population with income below or equal to two times the poverty level. EJScreen 

UNEMPPCT UNEMP It represents the percentage of the population who were unemployed. EJScreen 

LESHSPCT EDU It represents the percentage of the population of 25 years or older with an education status of 

less than high school. 

EJScreen 

Pollution and health Risk Variables 

PM25 PM25 It is the annual average PM 2.5 (µg/m³) concentration in air. EJScreen 

OZONE O3 It is the annual average of the top ten daily maximum 8-hour ozone concentrations (in parts per 

billion) in air. 

EJScreen 

DSLPM PMDSL It is an estimated value of diesel particulate matter (µg/m³) concentration level in air. EJScreen 

RESP RESP It is the respiratory hazard index that measures the combined risk from the respiratory system 

affecting air toxics. 

EJScreen 

RSEI_AIR RSEI_AIR It is the toxicity-weighted concentrations in the air of TRI-listed chemicals modeled by the Risk-

Screening Environmental Indicators (RSEI) model of EPA. It helps to quantify the human 

health impacts of toxic chemicals released into the air. The higher the value, the higher the 

potential for health impacts. 

EJScreen 

TRI TRI It is the average TRI chemical (onsite and offsite) release in lbs of a facility in a county. It is 

calculated by dividing the sum of TRI releases reported by the facilities by the total number 

of Facilities in a county. 

EJ Facility Mapping tool 

RCRA RCRA It is the average amount of hazardous waste measured in tons, transported by a facility in a county EJ Facility Mapping tool 

GHG GHG It is the average amount of carbon dioxide equivalent greenhouse gas direct emission from a 

facility measured in metric tons in a county. 

EJ Facility Mapping tool 

NEI NEI It is the average annual emissions of criteria air pollutants in tons from a facility in a county. EJ Facility Mapping tool 

DMR DMR It is the average amount of pollutants discharged into water bodies from a facility in a county. It 

is measured in kilograms. 

EJ Facility Mapping tool 

Hazard Proximity and Exposure Risk variables 

PTRAF PTRAF It represents the proximity to high traffic volume. It is based on the average annual daily traffic 

count divided by the distance from the centroid of the census block. 

EJScreen 

PRE1960PCT LEAD It is the percentage of occupied housing units built before 1960. As the paint used in those houses 

contained lead, it represents the potential lead exposure. 

EJScreen 

PNPL PSF It indicates the proximity to the superfund site. EJScreen 

PRMP PRMP It represents the proximity to the RMP facility. EJScreen 

PTSDF PHWF It represents the proximity to the hazardous waste facilities. EJScreen 

PWDIS PWDIS It represents the potential human health impacts from the toxic chemicals in the discharge water. EJScreen 

UST UST It represents the risk of being affected by leaked underground storage tanks. EJScreen 
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Data integration  

The census block-level data obtained from the 

EJScreen dataset and the EJ Facility mapping tool 

were combined based on the county name. Base-level 

variables were used as they were provided in the 

EJScreen dataset. For the level 2 predictors, 

individual data available for the facilities in the EJ 

facility mapping tool were summed and then 

averaged based on the number of facilities in that 

specific county.  Then, the calculated average value 

for a county was assigned to all the block groups 

present in that particular county for which the 

average value had been calculated.  

Statistical analysis  

A correlation analysis was conducted to generate 

a correlation matrix heatmap in the JASP tool (JASP 

Team, 2024). It was conducted to find out Pearson’s 

correlation coefficient value of the variables. 

Studying the results, the variables with very high 

correlation values (greater than 0.75) were discarded. 

GHG, NEI, and TRI had very high correlation 

coefficient values, so only the TRI variable was used, 

and others were discarded from the analysis. The 

impact of different variables on life expectancy is 

studied by taking the LOW-LIFE variable as the 

outcome.  

A simple linear regression model was 

formulated using the GAMLj package in the 

JAMOVI (The jamovi project, 2024) software tool. 

All the predictor variables were used as covariates, 

and the LOW_LIFE variable was used as the 

dependent variable. For the model thus formed, its 

model fit data was studied. The linear regression 

option available in the analyses tab of the Jamvoi tool 

was used to develop the model.  

Then, a null model (Model 0) was formulated. In 

the null model, only the intercept and the cluster 

variable were used, and no predictors were used. It 

helps to understand how much proportion of the total 

variance is due to the grouping structure. Multilevel 

modeling is necessary if the intraclass correlation 

coefficient (ICC) is significant. Then, multiple 

hierarchical models were developed to study the 

individual models for each group of covariates. This 

was followed by formulating a mixed model whereby 

all the covariates were used. The linear mixed model 

option inside linear models in the analyses tab of the 

JAMOVI tool was used to formulate multilevel 

models.  

First, the measure type of the variables was set. 

The CNTY variable was set to “nominal” type, 

whereas other variables were set to “continuous” 

type. For the models, CNTY is set as the cluster 

variable. The restricted maximum likelihood 

(REML) option was chosen to estimate the variance 

components, as it gives less biased variance than the 

maximum likelihood option (Maestrini et al., 2024). 

Following the general practice, 95% was taken as the 

confidence level for the model parameters 

estimation. The scale of the data points for different 

variables had large variability. Therefore, to ensure 

that the variables with values of a larger scale do not 

generate a bias in the model, all the covariates and 

the outcome variables were scaled using z-scores. 

This helped to create uniformity in the scales of the 

variables. 

The GAMLj statistical package used in the study 

uses the Sattherwaite approximation method to 

estimate the degrees of freedom and the Wald 

method to calculate the confidence intervals. The 

standard errors of the parameter estimates are used in 

the Wald method to construct the confidence 

intervals. The LOW_LIFE was set as the dependent 

variable. The null model is named Model 0, and the 

model with demographic and socioeconomic 

variables as covariates is Model 1. Similarly, the 

models with pollution and health risk variables as 

covariates and those with hazard proximity and 

exposure risk variables are Model 2 and Model 3, 

respectively. In model 4, all three categories of 

variables are used as covariates to formulate a single 

mixed model.  

Obtained model residual plots showed that the 

extremities had skewed the residual plot, making it 

non-normal. Therefore, 136 data points were 

identified as outliers using the cluster boxplot in 

JAMOVI software, which were deleted from the data 

set, and normality was reassessed using the Shapiro-

Wilk test (p-value > 0.05) and Q-Q Plot. The 

covariates' variance inflation factor (VIF) was 

measured for the collinearity check, and residual-

predicted scatterplots were used to check for 

homoscedasticity. The model with the best fit was 

then selected by comparing the model fit statistics of 

all models. AIC was used to compare the models' fit 

following the general practice. The model with the 

lowest AIC value was chosen as the final model 

owing to the best-fit statistics. 
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Results 

Data description 

Table 2 presents the descriptive statistics of the data. 

The outcome variable, LOW_LIFE, had a mean of 

0.22 with a standard deviation of 0.03, indicating 

relatively low variation across the census blocks. The 

median value 0.22 closely matched the mean, with 

minimum and maximum values ranging from 0.13 to 

0.31. For demographic and socio-economic 

variables, the average population (POP) per block 

group was 1,103.47, with a standard deviation of 

510.14 and a wide range from 0 to 3,478. The 

percentage of people of color (CLR) had a mean of 

0.08, but its distribution was highly skewed, as 

indicated by a median of 0.05 and a maximum of 

0.93. The percentage of limited English-speaking 

households (LING) was minimal, with a mean close 

to 0 and a maximum of 0.14. The proportions of 

children under five U_5) and individuals over 64 

years (O_64) were 0.05 and 0.21 on average, 

respectively, with minimal variation. Socioeconomic 

indicators, such as the proportion of low-income 

residents (L_INC) and the unemployment rate 

(UNEMP), had means of 0.38 and 0.07, respectively, 

while the educational attainment rate (EDU) 

averaged 0.12. For environmental variables, the 

annual average PM25 showed low variability, with a 

mean of 7.47 and a standard deviation of 0.70. Ozone 

levels (O3) had a mean of 57.15 and a narrow range 

from 54.27 to 59.65. Diesel particulate matter levels 

(PMDSL) averaged 0.12, while respiratory risk 

scores (RESP) had a mean of 0.30, but some extreme 

values reached 2.00. The RSEI air toxicity score 

(RSEI_AIR) showed significant variability, with a 

mean of 5,292.64 and a maximum value of 

330,995.86.  Among hazard proximity and exposure 

risk variables, the toxic release inventory (TRI) 

averaged 8,252.63, but variability was high, with a 

standard deviation of 17,335.41 and a maximum of 

Table 2. Data description (n=1503) 
Descriptive Mean Standard Error Median Standard Deviation Minimum Maximum 

LOW_LIFE 0.22 0.00 0.22 0.03 0.13 0.31 

POP 1,103.47 13.16 1,019.00 510.14 0.00 3,478.00 

CLR 0.08 0.00 0.05 0.11 0.00 0.93 

LING 0.00 0.00 0.00 0.01 0.00 0.14 

U_5 0.05 0.00 0.04 0.04 0.00 0.41 

O_64 0.21 0.00 0.20 0.10 0.00 0.77 

L_INC 0.38 0.00 0.36 0.19 0.00 1.00 

UNEMP 0.07 0.00 0.04 0.09 0.00 1.00 

EDU 0.12 0.00 0.10 0.10 0.00 0.66 

PM25 7.47 0.02 7.41 0.70 5.77 9.03 

O3 57.15 0.03 57.40 1.25 54.27 59.65 

PMDSL 0.12 0.00 0.10 0.06 0.04 0.35 

RESP 0.30 0.00 0.30 0.13 0.20 2.00 

RSEI_AIR 5,292.64 544.98 637.00 21,127.99 0.00 330,995.86 

TRI 8,252.63 447.15 1,439.48 17,335.41 0.00 103,905.08 

RCRA 43.59 2.36 5.57 91.60 0.00 579.89 

DMR 974,336.18 150,815.05 1,220.98 5,850,000.00 0.00 74,400,000.00 

PTRAF 52.88 2.46 16.38 95.02 0.00 1,367.11 

LEAD 0.35 0.01 0.31 0.24 0.00 1.00 

PSF 0.09 0.01 0.04 0.23 0.01 3.15 

PRMP 0.34 0.02 0.11 0.66 0.01 6.75 

PHWF 0.53 0.03 0.10 1.17 0.01 12.91 

PWDIS 3.04 0.85 0.01 32.96 0.00 1,113.48 

UST 1.92 0.09 0.37 3.66 0.00 32.74 

 

 
 

Figure 1.  Low-life expectancy distribution.  
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103,905.08. Hazardous waste facility proximities 

(RCRA) and wastewater discharge levels (DMR) 

also exhibited substantial ranges, with means of 

43.59 and 974,336.18, respectively, and extreme 

maximum values. Proximity to traffic (PTRAF) had 

a mean of 52.88 but ranged widely up to 1,367.11. 

Lead exposure risk (LEAD) had a mean of 0.35, and 

other hazard proximity measures like PSF, PRMP, 

PHWF, and PWDIS showed variation, with mean 

values of 0.09, 0.34, 0.53, and 3.04, respectively. 

Proximity to underground storage tanks (UST) 

averaged 1.92 but reached a maximum of 32.74.   
Fig. 1 shows that the southern part of West 

Virginia has comparatively lower life expectancy, 

i.e., a higher value of the Low Life expectancy 

variable (indicated by darker shade). 

The population distribution in Fig. 2 shows that 

Kanawha County has a comparatively higher 

population concentration than other counties and a 

very dark shade compared to other parts of the state. 

The distribution of people of color and limited 

English-speaking households seems the same 

throughout the state, with a slightly higher 

concentration in a few counties. The distribution of 

low-income, unemployment, and education below 

high school has a similar pattern. 

 The PM 2.5 concentration distribution in Fig. 3 

shows a relatively higher concentration in the 

northwestern part of West Virginia and lower in the 

eastern parts. The distribution of the air toxic 

respiratory hazard index and diesel particulate matter 

concentration also shows a similar pattern to PM 2.5. 

However, the ozone concentration is lower in the 

central and northeastern parts of the state than in 

other parts. The distribution of other considered 

pollution and hazard risk variables is higher in some 

counties but almost identical in different parts. 

The distribution in Fig. 4 shows that the 

proximities to all the considered entities, traffic, 

Superfund sites, RMP facilities, hazardous waste 

management facilities, water pollutants in discharge 

water, and underground storage tanks are high in a 

few counties and similar in other counties. However, 

the residential lead exposure is higher throughout the 

state due to the higher number of old houses. 

From the correlation analysis, the correlation 

heatmap in Fig 5 is generated.  In the correlation 

matrix heatmap, purple represents a positive 

correlation between the variables, and brown 

represents a negative correlation. The darker the 

shade, the higher the correlation value. A maximum  

correlation coefficient of 0.877 was found between 

the variables NEI and GHG, and the second highest 

value of 0.864 was between TRI and NEI. So, only 

 
Figure 2.  Demographic and socio-economic variables distribution.  
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the TRI value was used, and the GHG variable and 

NEI were discarded for the sections of the analysis.  

Modal Estimates 

The fit data, fixed estimates, and random 

components for all the models formulated are 

presented in Table 3.  For the simple linear regression 

model, the adjusted R-squared value is 0.181. This 

means that the model can justify 18.1% of the 

variability. The ICC value of the null model is 0.174, 

with a significant LR test value of 136, which means 

that clustering has improved the model. So, using 

multilevel models for the analysis makes sense. The 

fit statistics of all the models formulated are in Table 

2.   Model 3 has the lowest value of AIC (i.e., 3956), 

so it is the best model among all the models 

formulated.  

 

 

 

 
Figure 3.  Pollution and health risk variables distribution.  
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Fixed Effects (Measures of Association) 

The nearness to traffic volume (β = 0.0647; 95% CI 

0.0051 to 0.1243), the exposure to lead by staying in 

the houses built before 1960 (β = 0.1583; 95% CI 

0.10134 to 0.21521),  the proximity to an RMP 

facility (β = 0.1154; 95% CI 0.05027 to 0.18051), 

Nearness to hazardous waste facilities (β = -0.0773; 

95% CI [-0.14532 to -0.00928), the wastewater 

discharge indicator quantifying the relative risk of 

exposure to pollutants in downstream water bodies (β 

= 0.0496; 95% CI 0.00391 to 0.09528), and the 

indicator quantifies the relative risk of being affected 

by a leaked underground storage tank (β = 0.164; 

95% CI 0.10401 to 0.2239), are the significant 

predictors of the Low life expectancy in the Model 3. 

The UST variable has the highest value of the fixed 

effect, implying that it has the strongest influence 

over low life expectancy. People living in areas with 

a higher value of the UST indicator, i.e., areas with a 

higher risk of being affected by a leaked underground 

storage tank, have lower life expectancy. Similarly, 

the variable LEAD has the second most substantial 

effect. So, there is lower life expectancy in the areas 

with a higher chance of residential lead exposure due 

to a higher number of buildings built before 1960.  

 

 

Furthermore, PRMP, PTRAF, and PWDIS also have 

positive fixed effects, suggesting that life expectancy 

is lower in areas where these variables have higher 

values. However, the variable PHWF has a negative 

impact, which seems counterintuitive. It suggests 

that life expectancy is higher in areas with greater 

proximity to hazardous waste facilities. 

In addition, the proximity to a superfund site (β 

= 0.0285; 95% CI -0.02224 to 0.07915) is not a 

statistically significant predictor in model 3. So, this 

indicator does not significantly affect the life 

expectancy of people in a bock group.  

Random Effects (Measures of Variation) 

The Intraclass correlation coefficient estimated 

for the null model found that 17.4% of the variance 

in the LOW_LIFE is due to county-level factors. 

Similarly, for Model 1, Model 2, Model 3, and Model 

4, the variance attributed to the clustering effects are 

17.9%, 23.8%, 21.2%, and 21.2%, respectively. 

Also, the significant values of the LR Test in the 

random components show that the models’ fit 

statistics improved significantly for all with 

multilevel modeling.  
 

 

 
 

Figure 4.  Hazard proximity and exposure risks variables distribution.  
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Figure 5.  Correlation heatmap of all the parameters. The darker shade of purple color shows higher value of positive correlation 

between the parameters and the darker shade of brown color shows the higher value of negative correlation. Lower the shade lower 

is the respective correlation. 
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 Table 3. Model Parameter Estimates 
Variables (1,486) Model 0 [95% CI] Model 1 [95% CI] Model 2 [95% CI] Model 3 [95% CI] Model 4 [95% CI] 

Fixed effects 

(Intercept) -0.00988 [-0.138, 0.118] -0.0231 [-0.1463, 0.1001] 0.078 [-0.0739, 0.2299] 0.0378 [-0.09557, 

0.17122] 

0.04336 [-0.09214, 

0.17887] 

POP 
 

-0.1001*** [-0.1493, -

0.0508] 

  
-0.04297 [-0.09199, 

0.00605] 

CLR 
 

0.1118*** [0.0615, 

0.1621] 

  
0.04985 [-0.0015, 

0.1012] 

LING 
 

--0.0356 [-0.0813, 0.01] 
  

-0.04029 [-0.0845, 

0.00391] 

U_5 
 

-0.0173 [-0.0639, 0.0294] 
  

-0.00523 [-0.05049, 

0.04003] 

O_64 
 

-0.0264 [-0.0762, 0.0234] 
  

-0.00921 [-0.05735, 

0.03892] 

L_INC 
 

0.214*** [0.1598, 

0.2682] 

  
0.15023***[0.09585, 

0.20461] 

UNEMP 
 

-0.0161 [-0.0639, 0.0316] 
  

-0.01159 [-0.05785, 

0.03466] 

EDU 
 

0.0824** [0.029, 0.1358] 
  

0.10584** [0.0537, 

0.15799] 

PM25 
  

-0.1751* [-0.3341, -

0.0161] 

 
-0.01991 [-0.16929, 

0.12947] 

O3 
  

-0.0206 [-0.1502, 0.1089] 
 

-0.00661 [-0.12621, 

0.11298] 

PMDSL 
  

0.3302*** [0.2481, 

0.4123] 

 
0.12628* [0.02486, 

0.22769] 

RESP 
  

0.1136*** [0.0529, 

0.1744] 

 
0.08905** [0.03116, 

0.14695] 

RSEI_AIR 
  

0.0391 [-0.0122, 0.0904] 
 

0.03802 [-0.01246, 

0.08851] 

TRI 
  

-0.0257 [-0.167, 0.1155] 
 

-0.03552 [-0.16082, 

0.08979] 

RCRA 
  

0.0159 [-0.1178, 0.1497] 
 

0.01245 [-

0.10731,0.13221] 

DMR 
  

-0.0132 [-0.109, 0.0827] 
 

-0.00175 [-

0.0877,0.08419] 

PTRAF 
   

0.0647* [0.0051, 0.1243] 0.00413 [-0.05767, 

0.06593] 

LEAD 
   

0.1583*** [0.10134, 

0.21521] 

0.10573** [0.04774, 

0.16373] 

PSF 
   

0.0285 [-0.02224, 

0.07915] 

0.03021 [-0.01967, 

0.08008] 

PRMP 
   

0.1154*** [0.05027, 

0.18051] 

0.0775* [0.01216, 

0.14285] 

PHWF 
   

-0.0773** [-0.14532, -

0.00928] 

-0.11679*** [-0.18616, -

0.04743] 

PWDIS 
   

0.0496* [0.00391, 

0.09528] 

0.0471* [0.00269, 

0.09152] 

UST 
   

0.164*** [0.10401, 

0.2239] 

0.13299*** [0.07407, 

0.19192] 

Random Effects 

ICC 0.174 0.179 0.238 0.212 0.212 

LR Test 136*** 133*** 193*** 160*** 142*** 

Model Fitness 

R-squared 0.174 0.259 0.301 0.305 0.348 

Log-Likelihood -2067 -2006 -2033 -1968 -1953 

AIC 4140 4034 4088 3956 3958 

BIC 4156 4092 4146 4009 4096 

Number of Clusters 55 55 55 55 55 

Note: p < 0.001 ***, p<0.01**, p<0.05* 
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Discussion 

Our study evaluated different factors affecting 

life expectancy in West Virginia. The key findings 

show that proximity to traffic, RMP facilities, 

wastewater discharge, Underground storage tanks, 

and the risk of Lead Exposure positively correlates 

with low life expectancy. In addition, this study 

found that proximity to hazardous waste 

management facilities negatively correlates with low 

life expectancy. Also, although not significant, 

proximity to superfund sites was found to have 

positively contributed to low life expectancy. 

Our study showed that the population living in 

areas with greater proximity to traffic have lower life 

expectancy than those with lower magnitude of 

traffic proximity. This finding is consistent with the 

common theories as well as past studies showing 

adverse effects of higher proximity to traffic on 

human health (Brender et al., 2011; Hoffmann et al., 

2009; Sørensen et al., 2011) like higher risk of 

coronary heart disease (Gan et al., 2010), neurologic 

disease (Yuchi et al., 2020), greater exposure to 

pollutant emissions, higher risk of accidents, and 

many more.   

In addition, this study showed that populations 

with a higher risk of residential lead exposure have 

lower life expectancy. This finding aligns with the 

previous studies (Ana et al., 2007; Boskabady et al., 

2018; Patočka & Kuča, 2016) indicating that 

prolonged lead exposure leads to chronic health 

issues like increased blood pressure (Ana et al., 

2007), gastrointestinal effects, anemia (Prüss-Üstün 

et al., 2004), chronic kidney disease (CKD) (Song et 

al., 2024), and many other health issues. As found in 

our results, these factors can be the reasons for the 

lower expectancy caused by lead exposure. 

Next, earlier studies have revealed that the areas 

near RMP facilities have lower property values 

(Guignet et al., 2023). Because of this, people of 

lower income status are likely to live near RMP 

facilities, which in turn is inversely related to life 

expectancy (Rogot et al., 1992; G. Singh & Lee, 2020). 

This supports our finding of a direct relationship 

between proximity to RMP facilities and low life 

expectancy. 

Different contaminants and toxins in polluted 

water can enter the food cycle and cause serious 

health hazards following their use in farm irrigation, 

human consumption of aquatic life, and groundwater 

use for drinking (Jiang et al., 2022; Wato & Amare, 

2020). Thus, the greater the amount of toxins and 

pollutants in the downstream water, the greater the 

impact on human health. These health-related 

hazards can be acting as the cause for the lower life 

expectancy, which corroborates with the finding 

from our study that the Wastewater discharge 

indicator (indicator presents the relative risk from the 

pollutants in the downstream water bodies (U.S. 

Environmental Protection Agency (EPA), 2023)) is 

positively related to the low life expectancy. 

Moreover, underground storage Tanks (USTs) 

are used for storing energy supply reserves, waste 

containments, and toxic substances, owing to their 

large capacity and minimum floor space (Ooi et al., 

2019). Also, leaking USTs are considered a major 

source of groundwater contamination (Nadim et al., 

2000). Earlier studies have found that groundwater 

contamination is related to human health hazards 

(Jiang et al., 2022; Srivastav & Ranjan, 2020). This 

supports the positive relation between the predictor 

UST and the low life expectancy obtained in our 

study.  

Though insignificant, our study has found that 

proximity to superfund sites is positively related to 

low life expectancy, which aligns with previous 

studies' findings. The small number of Superfund 

sites (11 active Superfund sites (USEPA, 2024)) in 

the West Virginia State may be the reason behind the 

insignificance of this variable in the model. Studies 

have found uncontrolled hazardous waste sites, such 

as superfund sites, associated with environmental 

and public health concerns (Johnson Barry L. & 

DeRosa Christopher, 1997). Several hazardous 

substances, including VOCs, Arsenic, Cadmium, and 

Polychlorinated biphenyls (Johnson, 1995), are 

found in these sites. The health impacts from these 

dangerous substances may be the reasons behind 

lower life expectancy for the populations living near 

these sites. 

However, our study finds that proximity to 

hazardous waste management facilities is negatively 

related to Low life expectancy. This counterintuitive 

result contradicts previous findings (Domingo et al., 

2020; Saxena & Jotshi, 1996), where studies have 

found that proximity to hazardous waste 

management facilities has negative health impacts. 

The reason behind this finding remains unexplored, 

and it is a limitation of this study, which calls for 

further future work. 

The findings from our study suggest that for 

improvement in the life expectancy in West Virginia 
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state, the government needs to increase their focus on 

parameters like reduction of traffic pollution, 

providing special health care policies for the 

population in the proximity of RMP facilities, and 

superfund facilities. Several laws, regulations, and 

investments from the state as well as the federal 

government, like The Clean Water Act 

(CWA)(Walsh & Ward, 2022), The Resource 

Conservation and Recovery Act (RCRA) under the 

Solid Waste Disposal Act, etc., are related to the 

aforementioned life expectancy affecting factors. 

CWA is in action to protect water bodies against 

different kinds of pollution, and RCRA works to 

protect against leaking underground storage tanks. 

The recent bipartisan infrastructure law by the 

federal government has committed much money to 

improve traffic-related infrastructures (U.S. 

Department of Transportation, 2021). This 

improvement in transportation infrastructures can 

contribute to reducing some of the negative harms, 

such as reduction in noise and pollutant emissions 

from traffic proximity. Similarly, the RMP program 

under the Clean Air Act (Kleindorfer et al., 2004) and 

the Superfund program under the Comprehensive 

Environmental Response Compensation and 

Liability Act (CERCLA) (Johnson, 1995; Johnson 

Barry L. & DeRosa Christopher, 1997) are the 

programs launched by the federal government to 

protect populations from chemical accidents and 

uncontrolled hazardous wastes. In addition, the US 

Department of Housing and Urban Development had 

a Lead Hazard Reduction Grant Program (U.S. 

Department of Housing and Urban Development, 

2024) for fiscal year 2024 that assists projects 

involving abatement, repair, or rehabilitation of 

eligible privately owned entities to maximize the 

number of children below the age of 6 protected from 

lead poisoning. Though these acts and several others 

are acting to ensure healthier lives and longer life 

expectancy, there is still room for improvement. 

Providing medical benefits for the communities 

living in the proximities of RMP and superfund 

facilities, further stringent rules and regulations 

regarding noise and other pollution related to 

vehicles, and increasing the outreach of the programs 

intended for reducing residential lead poisoning 

programs can be some of the ways forward. Existing 

laws must be more vigorously implemented, and 

plans that motivate and incentivize facilities to 

switch toward less hazardous material usage in their 

processes must be developed. The state legislature 

should consider the factors evaluated in this study 

while formulating new plans and policies. 

Limitations  

The major limitation of our study is the lack of 

sufficient publicly available data. The data related to 

different factors that can impact life expectancy at 

the block group level, like the impact of drug 

addiction, access to healthcare services, and many 

others that could have been incorporated into the 

model, is lacking. Furthermore, our model showed a 

negative relation between the proximity to hazardous 

waste management facilities and the low life 

expectancy, indicating that the population living near 

the hazardous waste management facilities has a 

higher life expectancy. This is counterintuitive and 

contradicts the findings of previous studies. The 

reason behind this may be the lack of consideration 

of other parameters in the model. This calls for 

further research. 

Conclusion  

Traffic proximity, proximity to RMP facilities, 

residential Lead Exposure risk, and risk for toxic 

chemicals in discharge water significantly impact 

low life expectancy. These findings showed that to 

reduce the disparities indicated by Low life 

expectancy, the government and policymakers of 

West Virginia state should focus on increasing the 

outreach of existing programs and formulating new 

programs, such as providing more health care 

benefits to populations near RMP facilities, higher 

water toxicity, and superfund facilities. 
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