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Abstract: Studies indicate that 12.7% women are smoking during 
pregnancy, and a significant proportion of the United States population 
has been exposed to maternal smoking in utero. Mounting data suggests 
that nicotine can have a negative impact on neural system development. 
The goal of this study was to evaluate effects of nicotine exposure on 
chicken neural system. The early chick embryo is an established model of 
the first month of embryonic development in mammals. Nicotine (nicotine 
hydrogen bitartrate) or vehicle (sodium bitartrate monohydrate) solutions 
were injected in eggs prior to incubation. Three cohorts of 24 eggs 
distributed between treatment groups were generated. After injections, 
eggs were sealed and placed in the incubator. Embryos were harvested on 
day 5 after injections, evaluated, embedded in paraplast, sectioned, and 
stained with hematoxylin and eosin for histological analysis. Our data 
indicates that the nicotine treatment at 300 ng/ml does not affect viability, 
weight, or length of the embryos. Nonetheless, nicotine notably affects the 
axial rotation of the embryos (defined as a change in the dorsoventral 
orientation of the head during development). In this study, altered axial 
rotation was observed in nicotine treated groups 4 times more often than 
in controls (p<0.05). Microscopic analysis demonstrated that atypical 
axial rotation was associated with incomplete closing of the embryonic 
neural tube in the cervical region, but not in other areas of the tube. 
Further research is needed to evaluate the exact mechanisms of the 
developmental insult onto neural system development that was observed 
in the present study. 
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Introduction  

Neural tube defects (NTD) occur in 3000 births 
per year in the US (Centers for Disease and 
Prevention, 2010). NTD affecting the brain 
(anencephaly and craniorachischisis) are typically 
fatal.  NTD affecting the spinal cord (spina bifida) 
commonly result in neurological dysfunctions 
below the region of the defect. All congenital 
defects are associated with increased child mortality 
during first year of life and a high cost paid by 
various medical care financiers and society due to 
various degrees of disabilities (Malcoe et al., 1999; 
Yi et al., 2011). Improved neonatal medical care 
makes congenital defects one of the principal causes 
of negative outcomes of the pregnancies. 
Consequently, the focus of medical field research is 

shifting toward more intensive investigation of the 
causes of developmental abnormalities. Several risk 
factors have been proposed for NTDs including 
both first hand and passive smoking during the 
periconceptual period (Li et al., 2012; Wang et al., 
2014).  

The principal component of tobacco is nicotine. 
The chemical underlines addictiveness of tobacco 
and as both toxic and teratogenic effects on the cells 
(Lichtensteiger et al., 1988; Joschko et al., 1991; 
Roy and Sabherwal, 1994; Berger et al., 1998; Roy 
et al., 1998; Roy et al., 2002). Even relatively low 
doses of nicotine show strong cytotoxicity, 
including sharp increase of pyknotic/apoptotic cell 
counts in the developing brain (Roy et al., 1998). 
Such neuroteratogenic effects have been revealed as 
structural disturbances in the cortex and 
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hippocampus in young animals (Roy and 
Sabherwal, 1994; Roy and Sabherwal, 1998; Roy et 
al., 2002; Onal et al., 2004). Some of the nicotine 
induced developmental impacts, like Purkinje 
neuron loss in the cerebellum, are persistent and not 
resolved in later development (Abou-Donia et al., 
2006).   

Chicks are often used in teratogenic studies 
because chicks have a short period of development, 
easily available for injections, and have well-
defined developmental course (Hamburger and 
Hamilton, 1951). Obviously, the human nervous 
system has a greatly expanded structure, a longer 
and more complex development than nervous 
system of birds. Nevertheless, on earliest stages of 
development, that correspond to the first half of 
human pregnancy, birds undergo generally parallel 
development with mammals. At the same time, even 
though the general outlines of the development 
course are similar, humans and animals have 
distinct sensitivity to nicotine (Matta et al., 2007; 
Navaro et al., 1989), and higher doses are used in 
animals to model the nicotine exposure experienced 
by humans. Nicotine plasma levels of ~25-30 ng/ml 
of plasma nicotine in humans are equivalent to 
moderate to heavy smoking (~2 packs/day) 
(Benowitz, 1996; de Leon et al., 2002). In chicks, 
desirable nicotine levels can be 50 times higher (El-
Beltagy-Ael at al., 2015). The dose we use in the 
current study is 300 ng/ml.    

It was shown previously, that injection of high 
doses of cotinine (the principle metabolite of 
nicotine) in ovo induces malformations at the 
cranial part of the thoracic neural tube (Dalgic et 
al., 2009).  The goal of this study was to evaluate 
the effect of nicotine injections onto development of 
chicken embryos.  

 
 

Materials and Methods 
Three independently produced groups of 24 fertile 
specific pathogen-free eggs of the domestic chicken 
were obtained from Charles River Laboratories 
(Catskill, New York, USA). Within each group the 
eggs were labelled and then randomly distributed 
between treatments to avoid the bias. Nicotine 
(nicotine hydrogen bitartrate calculated as free 
base) and vehicle chemicals (sodium bitartrate 
monohydrate) were obtained from Sigma-Aldrich 
(St. Louise, Missouri, USA).  The nicotine doses of 

300 ng/ml were calculated according to the weight 
of the egg, and matching vehicle controls were 
produced. The chemicals were dissolved in Ringer's 
solution and sterilized before the injections using 
.22µm Millex® syringe filter units (Sigma-Aldrich, 
St. Louice, Missouri, USA).  Then the outer egg 
shell was wiped with alcohol, the injection was 
delivered from the blunt pole of the egg, and the 
hole was sealed with scotch tape (Dalgic et al., 
2009).  After injections, eggs were placed in the 
incubator.  

 

 
 
Figure 1. Range plots illustrating the weight (A) and length (B) 
of the harvested embryos. Values for weight are in grams; 
values for length are in centimeters.   
 

Embryos were harvested on day 5 after injections. 
First, the shell was chipped out to observe the 
animals in the egg. The viability of the embryo was 
assessed based on the heart activity using a 
stereomicroscope. The appropriate development 
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stage was verified (Hamburger and Hamilton, 1951) 
and 55 embryos were admitted to the study (29 
nicotine treated and 26 vehicle controls). Following 
the initial evaluation within the egg, the embryos 
were moved to a petri dish, and the extraembryonic 
membranes were removed.  

 

 
Figure 2. Circle charts demonstrate the frequencies of the 
embryos that have the head and body turn completed (blue), the 
embryos with the angle between head and body plains less than 
90o (red), and embryo with visually obvious problems in the 
cervical region such as an angle of the head turn of more than 
90o (green) for nicotine and vehicle treatment groups. 
 

Following the measures of weight and length 
(measured from crown to rump), the embryos were 
fixed in 4% paraformaldehyde, and embedded in 
paraplast. The anterior portions of the embryos were 
sliced, stained with hematoxylin and eosin for light 
microscopic analysis. The measures of the tissue 
separation between spinal cord and the developing 
epidermis of the skin were performed on the coronal 
sections through the cervical region of the 32 
embryos (16 nicotine and 16 vehicle treated 
animals) using Leica EC3 camera. The treatment 
groups were compared using Z-test (axial rotation) 
and an independent-samples t-test (the rest of the 
comparisons).  

 

 Results 
Our data indicated that the nicotine treatment does 
not affect viability (animal loss in treatment 
groups), weight, and length of the embryos (Fig. 1). 
Nonetheless, nicotine notably affects the axial 
rotation (“head turning”) of the embryos. It is 
known that during early development the embryo 

initially lies with its head facing down toward the 
yolk. Later in development the head starts to rotate 
and the rotation spreads down the body.  
Eventually, the entire embryo lies on its left side on 
top of the yolk (Roebroek et al., 1998; Manca et al., 
2012). In our study, atypical axial rotation (defined 
by excessive rotation and uneven appearance of 
dorsal part of the cervical regions) was observed in 
nicotine treated groups 4 times more often than in 
controls (p<0.05, Fig. 2). 
 
The microscopic evaluation indicates that altered 
axial rotation in nicotine treated animals was 
associated with defects of the spinal cord 
development in this treatment group. On the coronal 
sections taken in the cervical regions of the affected 
animals, we observed incomplete development of 
separation between the roof of the spinal cord and 
the surface of the embryo (Fig. 3).  However, the 
difference in the thickness of the tissue above the 
dorsal surface of the spinal cord across all animals 
between treatment groups was not significantly 
different (Fig. 4).   
 

Discussion 
The study demonstrated a non-systemic, specific 
insult on the process of neurulation following a 
dose of nicotine at which animal growth is not 
affected.  Although the mechanisms of observed 
insults are unclear, the data suggests that nicotine 
exposure at early development may lead to 
alteration in the CNS development in the cervical 
region.   

There are important differences in nicotine 
metabolism in chick and human embryos. Human 
embryo exposed to drug that crossing the placenta, 
and pregnant smokers demonstrate high rates of 
nicotine metabolism (Lambers and Clark, 1996; 
Dempsey et al., 2002). In sharp contrast, during the 
early development of birds, at the time when liver 
and kidneys are not functional, the concentration of 
injected drug in embryonic tissues is likely to 
remain steady for a long period of time, as nicotine 
will not be excreted or effectively metabolized 
(Bolin and Burggren, 2013; Wong and Cavey, 
1992). It is also possible that nicotinic metabolic 
pathway in chicks will have important distinctions 
from the one described in humans (Hukkanen et al., 
2005), but it will happen later in development and is 
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not likely to be relevant for this study.  

 

 

  
 
Figure 3. Cross-sections of cervical chicken spinal cords stained 
with hematoxylin and eosin from nicotine treated (A) and  
nicotine naïve (B) animals. The spinal cord of nicotine treated 
embryo failed to separate from the dorsal surface (arrows). At 
the time of sacrifice, this embryo had more than 90o angle 
between head and body plains. Bar: 100 µm 
 

In our study the embryos were exposed to the higher 
nicotine doses than observed in human smokers. 
The nicotine levels observed in heavy smokers is 
typically reported to be around 30 ng/ml.  At this or 
even lower doses, the maternal smoking is 
associated with a lower birth weight (Chiolero et 
al., 2005).  In sharp contrast to humans, our 
exposure did not resulted in decrease of animal 
weight, but rather discrete effect on development of 
specific part of the neural system in a significant 
number of exposed animals. Mounting data indicate 
differential sensitivity of different species to 
nicotine (Navarro et al., 1989). More research is 
required to fully appreciate the differences in 
nicotine promoted insults across different species 
and different regimens of the drug exposure.  

 

The exact mechanisms of observed effects also 
remain unclear. The recognized targets for nicotine 
are receptors for acetylcholine that are expressed 
starting from early stages of neurulation (Zoli et al., 
1995; Atluri et al., 2001; Schneider et al., 2002; 
Tribollet et al., 2004).  After migration from the 
mitotic zone, future neurons express mRNA for 
various nicotinic receptors subunits in a certain 
order (Atluri et al., 2001; Schneider et al., 2002). 
This suggests that there is a precise regulation of 
cholinergic actions on developmental stages and 
multiple ways for nicotine to disrupt this process 
and to provoke structural damage.  

 

 

 

Figure 4. Range plots illustrating the thickness of the tissue 
measured from the developing epidermis to the roof plate of the 
spinal cord in the nicotine and vehicle treatment groups.   

 

In its actions on nicotinic receptors, acetylcholine at 
early developmental stages acts not as a 
neurotransmitter but in a morphogenetic capacity by 
controlling and coordinating proper assembly of the 
brain (Seidler et al., 1994; Smith, 1994; Buznikov et 
al., 1996; Nguyen et al., 2001; Hohmann, 2003). 
Therefore, cholinergic ligands like nicotine have the 
ability to act as neuroteratogens (Joschko et al., 
1991; Chen et al., 1999) by disrupting the timing 
and intensity of acetylcholine-mediated commands, 
most likely via alterations in gene expression 
(Greenberg et al., 1986; Slotkin et al., 1997; Trauth 
et al., 1999). Currently we are working on 
identification of molecular mechanisms of nicotine 
induced developmental defects using RNA 
expression analysis. 
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