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Improved Evaluation of the Finite Hypergeometric
Series F(-n, %2;j + 1; 4)

H. W. Gould
Department of Mathematics
West Virginia University, Morgantown, West Virginia 26506

Abstract

Recurrence relations, depending on the parity of n, are given for the binomial sum

e n\/2k\ /j + K\
F(wny, 5 5 3 + 1; 4) = z (-1)k( )( )(J )
k/\ x k
x=0

from which the sum may be calculated for any integer j. A short table for -1 <j<6 is
given. Various other results appear, and the bracket function is used to simplify the expres-
sions. For example, it is shown that

Pl-as s o4 0= o e )“‘"”n
n!z' 3 i, '\'n—‘i 2 .

for n =2. A closed form for the general case is not found, but some information about the
general sum is found. The sum is found to be a quotient of polynomials, the denominator
polynomials having a very simple form. The results of this paper appear without proof in the
author’s book Combinatorial Identities (revised edition, published by the author, Morgan-
town, West Virginia 1972).

Introduction and Summary

An interesting binomial sum

n : -
n 2k\ /3] k
(153)  El=n, ;— s 3 % 13 hz) = T (-'Uk )( )( k ) zk
et k/\ k k
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If we next compare (1.7) with (2.5) and (1.8) with (2.6) we find

/2 :
=1
n+ j\/en -
j=22n+2j ( )( ) -(En——;‘-l,‘—j—T—r-f cosa'] 1:1: cosan+151 dx
0

(2.7) fjfn)

n o

and

/2
. o %9\ /en = 1 25 2n
(2.8) 5‘_](:;;) = jlaan*aa ( )( ) = cos“Ix cos™3x dx.
n
0

n

These relations reveal in a way why it is relatively easy to express the original
series in terms of n but not so easy in terms of j. For we may convert an integral
of the form

m/2
cospx cosq}x dx

o

into a series of terms by using cos 3x = cos x(1 - 4sin?x), and then use the
binomial theorem and integrate term by term. This gives a series the number of
whose terms depends on q. But it is more difficult to replace cos x by something
in terms of cos 3x. This would give a series the number of whose terms depends
on p. Expansions of this sort would allow us to sum other similar series.

Now it is possible to use the Euler transformation

Flay, b; c; z}) = (1 - z)-aF(a, c = b; c; z—f.—r— )

to convert our series into another form, and the result is

=1 n
23 ny /2j + 2k
(2.9) F(=n, -%- i3+ 1; 42) = Z ; E-Ek(‘fz)kﬂ - 4z)n-k .
U aemot N Atk

This series might shed other light on the nature of the sum.
Condensation of Results

It is interesting to note that the values tabulated above for the several special
cases may be expressed in a condensed form by use of the bracket function.
Recalling that [x] denotes the greatest integer < x it is not difficult to see that
some of the results listed above may be summarized in the following formulas:

o
(3.1)  Flomy 5 [3]s W = 3= (8 s ) A=W 5y
which combines 521 and Rf1;
(3.2)  Flem, 3 [EE im0 =2 w1, D,
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which combines 81_11 and Rn:

(3.3)  Fl-n, &[22 © = -1%, a0,
which combines Sg and Rg;

a
(3.4) F(-n, 1 i[_n_.i'._}__]; L) = o) I s B30,

2 2 2
which combines Sg and R?;
1 .rn + 4 g " n+ 2 (=1)" + 1
(3-5) Fln, SOl bk e 2 PR

which combines S? and RE;.

Other more complicated combinations can be given, but we have not deter-

mined the general pattern.
I wish to take this occasion to thank my friend and colleague Dr. A. M. Chak

for useful discussions during a revision of this paper.
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Partitioning Methods for Accelerating
Gauss-Seidel Interations

David Ryan and George Trapp
Department of Statistics and Computer Science
West Virginia University, Morgantown, West Virginia 26506

Abstract

The rebalancing method of accelerating the convergence of the Gauss-Seidel iteration
scheme is discussed. This method is shown to be related to a least squares procedure. A
numerical example is given which shows that this method can reduce the number of itera-
tions to convergence to below the number required using optimal successive over-relaxation.
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When approximating solutions to partial differential equations, one frequent-
ly is required to solve a large system of linear equations. In the case of elliptic
equations, these large linear systems are often solved using iterative techniques,
see reference [6] or [7] for a detailed discussion.

In this note we describe a method for accelerating the rate of convergence of
such iterative procedures. For simplicity we will only consider the problem of
accelerating the Gauss-Seidel iteration scheme. However, the approach is clearly
applicable to other schemes as well.

For completeness we will summarize the Gauss-Seidel method and its stand-
ard acceleration procedure—over-relaxation. Let Ax = y, where A is ann x n
matrix, and x and y are vectors. To solve for x, a sequence of vectors x°, x!,
x?, .. .is formed, where x© is a guess and xi*1 is given by xi*1 = Gxi + b, where
G = -(L+D) !'U and b = - (L+D) ™ 'y. Here we have partitioned Aas A=L+D +
U, where D is the diagonal of A, L is the lower triangular part of A, and U is the
upper triangular part of A.

Various conditions are known which guarantee the convergence of this proc-
ess, see [6], for example, if A is symmetric positive definite. We will assume that
we have a matrix A so that the Gauss-Seidel method converges.

This procedure may be written component wise as follows:

1 j=1
1+1 J 1+1 R 1
B X TS R i 1
k' k ’
i aj_‘l 3 k=1 . k=1+1 Jk'k
for j = 1,...,n. By linearly extrapolating the Gauss-Seidel scheme, one obtains

what is termed relaxation. Again component wise, it may be written as:

xji+ I (l-w)x; + wzji , where zj-i is the standard

Gauss-Seidel computed value given above. It is well known [6] that for any w in
(0,2), the relaxation scheme converges. Note w = 1 corresponds to Gauss-Seidel.
Moreover, there exists a unique w* which gives the greatest rate of convergence.
Various methods are known for estimating w*, see reference [6]. Our concern,
however, is with a alternate method of accelerating convergence.

Wachspress [7] first introduced the concept of rebalancing. His basic idea was
to partition the components of the approximation solution, then seek a normal-
izing coefficient for each partition so that when each component of a partition is
multiplied by the corresponding coefficient, the new vector of normalized com-
ponents is a better approximation. This idea has been extended and studied
further by Nakamura [3], [4]. In the next section, we reformulate the coarse
mesh acceleration procedure in terms of least squares theory. This approach
allows one to estimate errors. Prior to this work, the only mathematical ap-
proach to this procedure was given by Froehlich [2]. His work is primarily
concerned with showing that the reduced set of equations has the same funda-
mental properties as the original set.

.I-n the final section, we present a numerical example which illustrates the
utility of this method and reinforces the results reported in [1], [4] .

Partitioning
Given an approximation x to the true solution, we partition x as x =

(x%q1,%, = ._,xk)- where each x; is a subset of the components of x. Let P; denote
the projection into the subspace (0,...,x;,... ,0)- Then clearly P;P; = 0 for i #
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j, and the sum of the P;’s is the identity. Normally, k will be much smaller than
n.

k
We seek a vector z of the form z = 'El ¢;P;x which is a better approximation
l‘—_.

than x.
The problem then is to determine the c;. Replacing x in Ax =y by z, we
obtain the equation

k
(1) Z U=y
1=1

where u; = AP;x. This is a system of n equations in the k unknowns cy, . . . cy.

Many options are now available for finding the c;. A standard least square
solution will guarantee that || Az - y|| < || Ax - y|| because x = ZP;x and c,
=...= ¢, = 1 is an allowable set of coefficients (here [[a]|? = Za?).. Another
approach is a modified least squares solution. Letting ¢; = Pje where € =
(1,1,1,...,1) and taking the inner product of equation (1) with each e;, we
obtain

k
(2) 1:21 Ci(ui,t‘j) = (Y’e]) ’j =1' s ,k.

This system is solved for the c; and then z is computed. No norm estimates are
known to determine if this z is better than x. However empirical studies indicate
that a better approximation is obtained.

The basic advantage of the modified scheme over the standard least squares
procedure is that equations (2) may be formed using far less computing time
than is necessary to form the standard least squares system.

Numerical Example
We now discuss the results of the modifies method for one particular prob-

lem. Let A be the tridiagonal matrix with a; ;;,; = a;;.1 =1 and a;; = 2 except
a;; = 3 and ap, = 1. This matrix is known to be ill conditioned. Let y; = 2(-1)i
fori=2,...n-landy; =y, = 1. The components of the true solution to Ax =

y are X,; = 2 and X543 = 1. We will only report our results for n = 100. We
started with an initial guess of x; = 3, and continued each problem until the
norm of the approximation minus the true solution was less than .01.

The case w = 1 (Gauss-Seidel) took over 5000 iterations. We determined the
true w for this problem to be w = 1.93. Using this true w from the beginning, the
number of iterations was reduced to 720. This number however is not repre-
sentative of a real problem because one normally uses a sequence of estimates to
the true w as the scheme progresses and hence 720 is the least possible iteration
number using over-relaxation.

When applying the partitioning acceleration scheme, we computed seven
over-relaxation iterates using w = 1.8, then we formed equations (2) with k =8
and used the resulting z as an initial guess for seven more w = 1.8 iterations, and
continued this process. The number of iterations needed for convergence was
then reduced to 540. Our w = 1.8 was somewhat arbitrary, we only wanted a
value less than the true w. Other test results indicate that w = 1.85 would
decrease the iteration count. Choosing seven iterations as the time between
applying the partitioning procedure was also arbitrary. A study of optimizing the
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time between accelerating the iterates would seem quite useful. We partitioned
the components of x, into eight subvectors with x; being the first 12 compo-
nents of x, x, the next 13 components, etc. Again no attempt was made to
optimize the selection of the number of components or the size or distribution
of the components.

It seems clear to us that this partitioning procedure should be investigated
further, because even when applied in an non-optimal manner it improves the
convergence rate of the widely used optimal over-relaxation scheme.
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A Generalized Homomorphism of a Group

Jin Bai Kim
Department of Mathematics
West Virginia University, Morgantown, West Virginia 26506
Yong M. Lee
Mathematics Department
Trenton State College, Trenton, New Jersey 08625

Abstract

A mapping ¢ from a group G into a semigroup § is called a partial homomorphism of G
into § if there is a subgroup G, of G such that p(gx)=p(g)y(x) for all g in G and for all x in
G. In this note we study partial homomorphisms of G into S. A necessary condition for
¢(G) to be a regular semigroup is obtained (in Theorem 3).

The concept of a homomorphism of groups plays a fundamentally important
role in modern algebra. There is some inherent appeal in generalizing the concept
to general algebraic systems. For example: By a partial homomorphism ¢ of a
partial groupoid S into a partial groupoid S’ such that if a and b are elements of
S such that ab is defined in S, then the product (ay)(by) is defined in 8’ and
equal to (ab)y[1, p. 93].

This definition is a very weak (or a greatly generalized) version of the homo-
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morphism of a group into a group, regarding the domain and the range of the
mapping. We define a partial homomorphism which is stronger than the partial
homomorphism of groupoids but is weaker than the homomorphism of groups.

Definition

Let G be a group and e denote the identity of G. Let S be a semigroup. A
mapping 7 of G into S is called a partial homomorphism of G if there exists a
subgroup G, of G such that m(gx)=m(g)m(x) for all g in G, and forall x in G. A
one to one partial homomorphism is called a partial isomorphism. We shall say
that 7 is a partial homomorphism of G into S with an associated subgroup G,.

We study a partial homomorphism of a group into a semigroup which is
defined as above and give three theorems which indicate how the work relates to
groups and semigroups.

THEOREM 1. Let 7 be a partial homomorphism of a group G into a semi-
group S with an associated subgroup G,. If 7’ is also a partial homomorphism of
G into S with m(G)=n" (G) and m(e)#n’(e). Then there exists a subgroup S; of S
such that S; and 7(G,) are isomorphic and disjoint.

Proof

It is clear that m(G,) is a subgroup of S. Let 7’ be a partial homomorphism of
G into S with 7(G)=n'(G) and m(e)#n’(e), where e is the identity of G. We show
that m(e)n’(e)=n"(e). To do this, let ' (e)=n(b) and m(e)=n"(a), for some a, b in G.
We can see that m(e)n’ (e)=m(e) m(b)=7 (eb)=m(b)=n'(e). Similarly we can prove
that 7'(e)m(e)=m(e). Now we show that m(Gy)n'(e)={n(g)n'(e): gE G, }=S,; isa
group. Let x € S;. Then x takes the form x=m(g)n’(e) for some g in G,. We can
see that xm(g™ )7’ (e)=m(g) 7'(e)m(g™") m'(e)=m(g) m'(e) m(eg™')m'(e) =m(g)m’(e)
m(e) m(g™!) m'(e)=m(g) m(e) m(g=1) w'(e)=m(e) 7'(e), m(e)n'(e) =nm(e) 7'(e)m(e)
m'(e), m(g~ ') m'(e)x=m(e) 7'(e), and hence S, is a group. Define a mapping f:
m(Go)>m(Go)m (e)=S; by f(x)=x7'(e) for x € m(G,). Letting g;,82 € Go, we can
see that £(7(g, (g2 ))=F (7(g1g2))= m(g1g2) T (e)=T(g1egz) T ()=m(gy )(e) 7(g2)
m'(e)=(gy) ' (e)m(e) m(gz) T'(e)=m(gs) T (e)(g2) (e)=F (T (g1))E(m(ga)). Now
assume that f(m(g;))=f(m(g;)). Then by post multiplication by (e), we obtain
m(gy)=m(g2). This proves that S; and 7(G,) are isomorphic. It is easy to see that
m(Go) N S;=¢, the empty set.

THEOREM 2. Let m; be a partial homomorphism of a group G into a semi-
group S with an associated subgroup G,. The following statements are equiva-

lent.
(a) 1 (G) contains n distinct idempotents {¢;: i=1,2,..,n } and e;e;=e;.

(b) There exist n distinct partial homomorphisms {‘ni:i=1,2,..,n} with
m;(e)#m;(e) for i#j and m,; (G)=m;(G) (i=1,2,..,n).

Proof

(a) implies (b). Let m, (g;)=e; be an idempotent for some g; in G. Define 7; by
m,(x)=m, (xg;) (x € G). Letting g € G, observe that ;(gx)=m, (gxg;)=m; (g)7T,
(xgi)=m1(g) mi(x) =M1 (ge) m; (x)=m1 (g)erm; (x)=m1 (g)eier m; (x)=T1(g) M1 (8i)e,m;
(x)=m; (gg)ermi(x) =mi(g)my(e)mi(xg;) =mi(g) i(xg)=mi(g) mi(x) and
m;(e)=m, (eg;)=m; (g;)=e;; which shows that m; is a partial homomorphism of G
into S and G, is its associated subgroup.

(b) implies (a). We assume the conditions of (b). Clearly m; (G) contains n
idempotents e; (i=1,2,..,n). For each m;(c)=¢;, there is g such that m;(g)=¢;.

Observe that e;e;=m;(e)m;(g)=m;(eg)=m;(g)=e;-
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THEOREM 3. Let m; be a partial homomorphism of G into a semigroup S
with an associated subgroup G,. Let [G:G,]=m. If there exist m-1 partial homo-
morphisms {7;:i=1,2,..,m} of G into S8 such that m;(G)=m;(G) and
{mi(e):i=1,2,...m} are m distinct idempotents in S. Then 7;(G) is a regular
semigroup.

Proof

m
It is not difficult to show that m;(G)= igl‘nl(Go)Tri(e). We shall show that

m,(G) is a semigroup. Let h,k € 7;(G) and let m,(g;)m;(e) and k=m; (g2)m;(e).
Then hk=m, (g1 )7 (g2)m (e)=m1 (g182)m; (e) € 71 (G). Hence m,(g) is a semi-
group. We see that h(m; (g, 1)m; (e)h=my (g1)m1 (g1~ )71 (g1)m;(e)=h, and hence
T (G) is regular. This proves the theorem.

The author is indebted to the referee for remarks leading to a smoother
presentation in this paper.
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Linear Functionals on the Space of Entire Functions

W. C. Sisarcick
Department of Mathematics
Marshall University, Huntington, West Virginia 25701

Abstract

A metric d is defined on the linear space T of entire functions of one variable. The
classes of scalar homomorphisms and metrically bounded linear functionals on (I',d) are
characterized. Natural definitions on the class of metrically bounded linear functionals on

(I',d) give rise to a Banach space isometrically isomorphic to the Banach space -[¢ x¢+, -,

Il } over ‘¢, where + and * are the usual definitions of addition and scalar multiplication,
and |[|(a,b)li = la| + b].

Introduction

In 1948, V. G. Iyer [1] considered the linear space I' of entire functions of
one variable, together with the metric d defined by

d(f,g)=sup{lag — bol, lan —b,|' ",n=>1} where
=]

(o a]
f(z) = nEO anz" €ElNand g(z) = nEO b,z" € I'. He proves the following.
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Theorem A. The space (I',d) is a complete, separable linear metric space.
Theorem B. Every continuous linear functional F on (I',d) is of the form

oo
F(f)= Z _ bgaa,
n=0

oo
where f(z) = EO anz" € I' and {bn}ncfo is a fixed sequence of complex num-
n:

bers for which { |b,| f"'},-,t:’o is bounded, and for every such {bn}n:c’g the corre-
sponding F, defined as above, is a continuous linear functional on (I',d).

Following Wilansky [3], a scalar homomorphism F on (I',d) is a linear func-
tional on (I',d) such that F(f-g) = F(f) = F(g) for all f, g € I'. Here f*g is the
entire function defined by (f*g) (z) = f(z) * g(z).

Theorem 1. Let F be a function from (I',d) into @, F # 0. Then F is a
continuous scalar homomorphism if and only if there exists a unique b € ¢ such
that for all

oo

f(z)= £ apzn €T,
n=0

F(f) = £(b).

Following Iyer [2], a linear functional F on (I',d) is said to be metrically
bounded if and only if there exists a non-negative number M such that for all
f €T, |F(f)l <M d(f,fy). Here fy is the element in I' such that fo(z) = 0 for all z
=

It is well known that linear functionals on normed linear spaces are continu-
ous if and only if they are bounded. Iyer [1] proves that no norm can be
defined on the linear space I that produces a topology equivalent to the topolo-
gy generated by d. Because of this we have Theorem 2.

Theorem 2. Let F be a linear functional on (I',d). If F is metrically bounded,
F is continuous. Also, there exist continuous linear functionals on (I',d) that are
not metrically bounded.

Let B denote the class of metrically bounded linear functionals on (I',d).
Then -[B, ke ,]' is a linear space over (¢, where + and * are defined as usual. For F
€ B, define [|F|| = inf{M = 0 | for all f €T, |F(f)| <M d(f,fp)}. It is clear that
{B, +, *, |I*|l} is a normed linear space.

Theorem 3. Let F be a function from I into ¢. Then F € B if and only if

there exists a unique (a,b) € ¢ x € such that for all f(z) = oo
I L = B

n=0
F(f) =aga + a;b.
Also, |IF|| = a] + |bl.

Proofs

Proof of Theorem 1. Let F be a function from I' into ¢, F # 0. If F is a
continuous scalar homomorphism, by Theorem B there is a unique sequence
[+ 4]

00
{b,}=0 of complex numbers such that for all f(z) = nEO apzd € P = nEO

apbp. Note that bo=1. For if gn(2z) =2",n >0, each g, €T, by = F(go) = F(go *
go) = F(go) = F(go) = bo. If by =0, then for alln =1, b, = F(gn) = F(go * 8n) =
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Excludable and Includable Points

William Simons
Department of Mathematics
George Trapp
Department of Statistics and Computer Science
West Virginia University, Morgantown, West Virginia 26506

Abstract

Excludable and includable points are defined, and a study of these points is made for a
convex collection of N points in the plane. Also, a criterion is presented for determining
whether any given point is excludable or includable, and a method for finding an excluding
(including) circle is given.

In previous work [2], we considered a collection of M + n + 1 points in RP
and found a condition which ensured an affirmative answer to this separability
question: Given k, 0 < k<X M, is there a sphere through n preselected points and
one other which contains k points in its interior and M - k in its exterior?

This question has in an informal sense a dual, namely: Can k preselected
points be separated from the remaining points by a sphere? Kirchberger’s The-
orem [1], [4], which deals with separation by hyperplanes, can be generalized
to provide an answer to this dual question [4, page 177, problem 6.4], [3].
However, if k = 1 Kirchberger’s Theorem is not needed because the dual ques-
tion is then trivial—unless the separating spherical surface is additionally required
to contain n + 1 of the remaining points; whereupon, the problem becomes quite
involved, and Kirchberger’s Theorem is of no help. This paper is concerned with
this final problem, in the plane, of characterizing which of those points can be
separated from the others by a circle. Stated more precisely, let X be a collection
of N points, N =4, in general circle-free position in the plane; that is, no three
points lie on a line and no four points lie on a circle. Then we say the point x €
X is an excludable point if there is a circle through three points of X which
contains X in its exterior and all the remaining points in its interior. Similarly, x
€ X is an includable point if there is a circle through three points of X which
contains X in its interior and all the remaining points in its exterior. Let

E = {x € X | x is excludable but not includable },

I ={x € X|x is includable but not excludable },
and

D = {x €X | x is both excludable and includable }.
In addition, we will use the notation conv(S) for the convex hull of the set S;
C(x,y,z) is the circle through the points x, y, and z; C*(x,y,z) is the circle
C(x,y,z) together with its interior; C(x,y) is the circle through the points x and y

having the line segment connecting x and y as a diameter; and C*(x,y) is C(x,y)
together with its interior.

The set X is convex if conv(X - {x}) i:f: conv(X) for every x € X. If X is not
convex then those points x for which conv(X - {x}) = conv(X) are called interior
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points, and it is easy to show that every interior point belongs to I. Indeed, if x,
is an interior point then for every circle C(u,v,w) such that X - {x0} C C*(u,v,
w) it follows, since C*(u,v,w) is convex, that C*(u,v,w) D conv(X - {xp}) =
conv(X) D x, and hence x, is not excludable. To show x4 is includable we can
construct an including circle by first picking u € X so that C(xg,u) contains no
points of X in its interior. Letting p be a point on the line through x, and u and
moving p from x( away from u, we obtain an expanding family of discs, C*(p,u),
each containing xo. For some p, say p’, C(p’,u) will pass through two points of
X, u and v, and C*(p',u) N X = {xg,u,v}. Since xq is an interior point there is
some point of X, different from x; on the same side of the line through u and v
as Xgo. Therefore, by Lemma 4 below, we can obtain a circle through u, v, and a
third point of X, which contains only X in its interior. Hence, x, is includable.

The nature of non-interior points requires a more careful analysis. Thus, from
here on, we assume X is convex.

We label the points of X sequentially from 1 to N by going clockwise around
the convex figure. Each x; has x;.; and x;, ; as its adjacent points, if we agree to
take Xpn4+1 = X; and xg = xn. In [2], we showed that given two adjacent points
X, X;+1 there is a circle C(x;,x;4+1,y) for some y € X which excludes exactly one
point of X, and a circle C(x;,xj+1,2) for some z € X which includes exactly one
point of X. Suppose the excluded point is x;. Then by considering x; and xj,
we are assured, as above, of finding another excludable point. Thus X has at least
two excludable points.

Similarly, we can show that X has at least two includable points. Much more,
however, is true.

Theorem 1: Let X be a convex set of N points in general circle-free position in
the plane, then:

i) every point in X is either excludable or includable, i.e. EUTUD = X,

ii) at least half of the points in X are excludable (includable),

iii) at least two points of X are not excludable (includable), consequently, 1 #
¢ and E # ¢.

The definitions of excludable and includable points give no indication of how to
find an excluding (or including) circle for a particular excludable (or includable)
point, nor do they provide a constructive means of determining whether a point
is excludable or includable. These shortcomings are completely overcome by the
next two theorems.

Theorem 2: Let x; € X be an excludable point. Then there is a circle
C(X;.1,Xi+1,Xj), through some x; and the two points adjacent to x;, which is an
excluding circle for x;.

If x; is an includable point then similarly, for some non-adjacent xy, the circle
C(x;.1,X;+ 1,Xk) is an including circle for x;.

Theorem 3: Let C; be those points of X inside and on the circle through x; and
its two adjacent points; i.e., C; = C¥(x;.1,x;,X;4 1) N X,
Then
x; €E1if G; =X,
x; €E iff C; = { Xy xxie1 b
and =

X; €D !f{xi-l XX+ 1}.-'Céci ix'

We will use the following fundamental result. Its proof, which depends on
nothing more than the fact that two circles intersect at most in two points, is
omitted.
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Lemma 4. Given a circle C(x,y,z) and a point p, let H be the half-plane contain-
ing p determined by the line through x and y. Then p is in the interior of
C(x,y,z) if and only if

C*(x,y,p) NH qC& C*(x,y,z) N H,

and p is in the exterior of C(x,y,z) if and only if
C*(x,y,z2) NH ;:& C*(x,y,p) N H.

In view of Lemma 4, Theorem 3 follows immediately from Theorem 2. To
prove Theorem 2, let x; be an excludable point. Thus, there exists a disc

C*(xj,Xk,Xm) which excludes x; and contains the remaining points. In particular,
x;.; and x;,; are in C*(X;,Xy,Xn, ). Therefore, at least one of x;, xi, X, is not in
C*(x;.1,%i,Xj+1), and by Lemma 4, x; can be excluded by a circle through
X;.1,X;+1 and some third point. The part of Theorem 2 concerning includable
points is proved in an entirely similar manner.

We turn now to the proof of Theorem 1. Since C; in Theorem 3 must satisfy
one of the three conditions listed there, part i) is proved.

Consider two adjacent points X;,X;+1. As before C(x;,X;+1,y) for some y €X
excludes exactly one point of X, say x;. If x; is not adjacent to either x; or x;,;
then both C(x;.3,%;,X;41) and C(x;,X;4 1,X;4 2) contain x; in their exteriors. Thus,
x; and X;4; belong to E U D. If x; = x;.1, then C* (x;,X;,X;4 1) contains X and by
Theorem 3, x; € L. Similarly, if x; is x;4 5, then x;,; €L Since x; cannot be both,
one of X;,X;;1 is in E U D. Therefore in every pair of adjacent points, one point
is excludable and the other may or may not be. Hence, the excludable part of ii)
is proved; analogous reasoning proves the includable part of ii).

Suppose now every point in X is excludable. Then by Theorem 2 C(xp ,X2,X;)
is an excluding circle for x;, where 4 < j < N. The index j # 3, for if it were
C*(x;,X5,x3) would contain X, and hence x, would not be excludable. Again by
Theorem 2 C(x,,x3,xy) is an excluding circle for x,, with k <.

This construction can be continued only to C(x;.3,X;.1,Xm), the excluding
circle for x; ;. Now we must have x,, = x;, and hence x;.; is not excludable.
Thus, there is at least one point which is not excludable. Assume there is only
one, and renumber the points so that that point is xy. Then proceeding exactly
as before, we deduce that x; ; can not be excluded. Since j <N, this is a second
point in I. The includable statement can be proved in this same way using
including circles. This completes the proof of Theorem 1.

Let N be odd. Then if M = (N+1)/2 we have from Theorem 1, part ii), card (E
U D) = M and card (I U D) = M. By construction E, I, and D are disjoint,
therefore D # ¢. Thus we have shown the following.

Corollary 5. Given the hypothesis of Theorem 1, if N is odd then there exists a
point which is both excludable and includable.

For N = 4, D is always empty, and for N = 6 there is a configuration of X for
which D is empty. Whether or not D must be non-empty for large even N is an
open question.
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A Correspondence Between Control Logic of Associative
Memories and Markov Algorithms
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Abstract

The basic structure underlying serial associative memory addressing schemes is currently
a conditional logic evaluation. This evaluation is a special case of a Markov algorithm.
Decision algebras are used in order to model multiple-valued selector networks and these
networks realize serial associative memory addressing schemes. The purpose of this paper is
to draw attention to the not well-known nor understood equivalence between the control
logic for associative memory addressing schemes and Markov algorithms.

Key words and phrases. Associative memory, content addressable memory, conditional
expressions, Post algebras, Markov algorithms, functional-distributed logic.

Introduction

Associative Memories

Associative memories (AM’s) are just now becoming popular, and their appli-
cations are not completely known (Bell, Bhandarkar, Feucht, Rege, Siewiorek,
1972-1973); one use of AM’s is as cache memories; it is felt that these memories
may have applications in emulation of existing systems; they can, also, be used
to perform a certain class of logic functions (the question of logic functions will
be discussed later on in this paper). Another application of associative memories
is the Pattern Articulation Unit (PAU) of Illiac III (1971), a large pattern recog-
nition computer; the PAU employs a two-dimensional iterative array of 1024
(32 x 32) identical processing modules locally connected to execute Boolean
functions, threshold logic, and signal path building; it is augmented by its own
control unit and by an unconventional corc memory, called the transfer mem-
ory, which in conjunction with the iterative array, operates as an associative
memory. The AM of Illiac III processes images in parallel; some AM’s associate
in parallel, rather than sequencially, in order to speed up processing. Our model-
ing in this paper, of association, will use sequencial association rather than
parallel association. When sequencial association is used the underlying logic is
called, by the author, conditional (or functional); and, when parallel association
is used the underlying logic is called, by the author, distributed (or not function-
al). '

Both the IBM 360/67 and IBM 360/85 use cight and 1,000-word associative
(content-addressable) memories, respectively, to increase performance, the CDC
6600 instruction buffer is in effect a small content-addressable memory (CAM).
In the IBM 360/67, eight associative storage registers are in its associative array;
each stores an individual page address. Bits 36 and 37 of each register reflect the
validity and the usage of that entry, respectively. Both bits are set to 1 when the
register is loaded, and both are reset to 0 when the segment table register
(control register 0) contents are changed. If, within a user’s time slice, eight
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separate pages are referenced (i.e. all associative registers have been loaded and
each bit 37 is a 1) all bit 37’s are reset to 0. Subsequent references to a register
will cause bit 37 for that register to be set. During subsequent translations, the
result will be loaded into the lowest-numbered register that has a 0 in a bit 37
(the roles of 1 and 0 could have been reversed). Bit 37 is set to a 1 as a result of
this load. With this technique, the associative array always contains the most
recent and/or most frequently used page addresses. Since instructions frequently
occur in sequence, an “IC register” is implemented to hold and provide the
translated page address for use in serial instruction sequences; this avoids repeat-
ed accesses of the page address from the associative array.

Minsky (1972) has treated rotating storage devices as partially associative
memories by addressing conventional cylinders “by content’’; the cylinder stor-
age is divided into two parts: data space and control space. Suppose that the
items (n, d) are stored by recording n on a control cell and d on its associated
data cell. Given a predicate p we can retrieve an item satisfying p(n) (e.g. p(n):
n.AND.m=b, b a bits pattern and m a mask) by reading continuously the control
track, computing p on each control cell. If a control cell containing an n which
satisfies p(n) (frue) is found, then switch to its associated data cell to read the d
part of the item.

The purpose of this paper is to draw attention to the not well-known nor
understood equivalence between the control logic for associative memory ad-
dressing schemes and Markov algorithms.

Methods
Addressing Schemes

Earlier in the paper we mentioned the construction of small prototype associ-
ative addressable memories. Let us look at a prototype that incorporates many
of the fundamental concepts of AM’s or CAM’s that we have thus far observed.

Foster (1970) has described the structure for a small simulated associative
memory (SAM).

From a user’s point of view SAM is a word organized machine with cight
bytes per word. These may be 8 bit or 6 bit bytes depending on the implementa-
tion. There is a scratch pad memory of 64 words that are directly addressable by
number 0-77 octal); there are three high speed registers:

(1) The Instruction Register (IR) used to hold the current instruction;

(2) The Comparand Register (CR) to hold the pattern of bytes being searched

for; and,

(3) The Mask Register (MR) which controls which portions of the comparand

must be matched in a search operation.

Finally, there is the Associative Memory itself which consists of N eight byte
words, where N is as large as is convenient for the installation. Connected with
cach word of the associative memory there are four tagbits: Ty, Ty, T,, T3, and
an instruction bit 1. The words of the AM are ordered from “beginning” to
‘“end” but have no address. Each word, therefore, has a “predecessor” and a
“successor”’. Words whose Ty, . .. ,T3, I bits are set to 1 are called “responders
on Tpulh o Ta X,

The basic instruction cycle has three phases:

(1) Find the first (nearest the beginning) responder on I and copy its contents

into the IR;
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times in combinations) are set or reset to by another set of logic instructions for
To, T3, Tz, T3; for example, the logic instruction ‘TOR t, u, v’, for each bit
position j in tag-stores t and u, takes the logic result of t; V u; and assigns it to
the jth bit position of tag-store v, i.e. t; V u; = v;Vj.

Markov algorithms have been defined in Curry (1963).

Consider strings of symbols from a given finite symbol set, called the alpha-
bet. Assume the alphabet does not contain the (syntactic) symbols = and *+”
(alphabet with “—” and ‘“*” form a larger symbol set). A simple (Markov)
production is a string A = B, where A and B are strings in the alphabet. A
conclusive (Markov) production is a string A—>* B, where A and B are strings in
the alphabet. In the production A = B (A =* B) the antecedent is A and the
consequent B.

Let A & B (or A~> * B) be a simple Markov production, where A and B are
strings in an alphabet d{ . Let S be a string of symbols in where S(gf)
denotes the set of finiie length strings of symbols from alphabet A, ie. S €
S(cA). The production is applicable to S if there is at least one occurrence of A
in S (that is, as a subword or substring). Otherwise, the production is not
applicable to S. If the first occurrence of A in SisS=P * A * Q (or just PAQ),

the result (substitution) of applying the indicated production of S is the string
PBQ.

P Q

| e | f 1
S I A A
| 3 A

FIGURE 2. A =B is applicable to S.

A Markov algorithm M is a finite sequence Py, . .. ,P, of Markov productions
to be applied to strings in a given alphabet according to the following rules. Let
S be a given string. The sequence M is searched to find the first production P;
whose antecedent occurs in S. If no such production exists, the operation of the
algorithm halts without change in S. If there is a production P; in the algorithm
whose antecedent occurs in S, the first such production P;, is applied to S. If this

is a conclusive production, the operation of the algorithm halts with no further
change in S. If it is a simple production, a new search is conducted using the
string S’ into which S has been transformed. If the operation of the algorithm
ultimately ceases with a string %, §* is the result of applying the algorithm to S.

Of course, the operation of the algorithm may hot cease; it may loop indefi-
nitely, for example, if the algorithm contains a simple Markov production of the
form A —> A.

Let us now define the class Y of extended Markov algorithms M € .. M is
defined as follows:

(1) **=7, **+” are syntactic symbols;

(2) A,B,C,D,E,F,G,H, ... denote strings in of , members of S(c4);

(3) A— B, A = B are members of ¥ ;

(4) ifM]_,Mz € %, then M, = Mz Em;
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completed any occurrence of the antecedent A of A = X, then we store it in the

antecedent address.
//
VA A

FIGURE 3. Antecedent address.

For example, let S: 11211211211, A: 11211, and B: 33; then, we have §™:
33911211. Notice that the occurrences of A, in this case three of them, can be
overlapping and can be such that more than just one A (in this case two) is
removed by the substitution.

The possibilities can be even worse, and the number of A’s removed from S
by substituting for one A can become unbounded. Letting S: 111111111111111
consist of fifteen 1’s and letting A: 11111111 consist of eight 1’s, we see that
removing the left-most A, 8’: B1111111, at the same time removes eight addi-
tional A’s from S, these A’s not being available for use in future substitutions.
Moreover, if 2n — 1 1’s occur, where A: 11...11isn 1’s, then removing one A
removes n A’s of length n. Letting S: 1010101010101010101010 consist of
eleven 10’ and A: 101010101010, then by removing the left-most A we remove
six A’s; and if S: 10...10 has 2n - 1 10’s, n the number of 10’ in A, then
removing the left-most A removes n A’s which will not be available for use in
future substitutions.

Let us now formally define the mapping Subst(S): M~ S(A), for every
string S, where YW is the class of extended Markov algorithms and S(.4) is the
class of strings over 4 including a symbol denoted “Halt”’.

First, let us define what is meant by the rank of members of M . Inductively,
define the rank of M € Y as follows:

(i) A,B,C,D,E,F,GH, ... strings in o are of rank 1;

(ii) Markov algorithms are of rank 2;

(iii) M € YN is of rank a (@ = 2, o positive integer) if it contains at least one
M e (or S(cf)) of rank @~ 1, as either an antecedent or consequence,
but none of rank greater than & - 1,i.e. (M; >N, Mp -+ Nz, ...,Mg >
N, ) is of rank a if there exists an M; or N; (i=1, . .. ,k) such that the rank
of M; or N; is @ — 1 (but no M; or N has rank greater than a - 1).

Define Subst(S): JJ|— S(c4) inductively as follows:
(I) Let A eof be of rank 1; then, since A €7 we define

Subst(A)(S)(A or Halt) = PAQ, Halt.

Let M= (A, —* X, Ay — XypeesA —+ X)) e W) be of rank 2:

then, we define Subst(M)(S)( min. { | € S/) = Subst(M)(S)(X, or Halt)
st B 1A €8 e or Falk

= Px; Q, Halt, where S = PA{Q and min. has a value of Halt if the minimum

does not exist; but, Subst(s) does exist then with a value of Halt.

(I1) Assume that arbitrary M' em is of rank a and that

Subst(M')(S)( min. {omal  mimed {K | A
1<j(a)<n(a) 1sk(b)sn, Tk )

:S}) l
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Let K be a complete lattice (eventually it will be N, the counting numbers, or
a hierarchical graph complete lattice) and let §: K > 9}{_be a mapping.

Results
Building Schemes and Selector Networks

We now have the following theorem where the equivalence is determined by
evaluating the left and right hand expressions.
Theorem. Using Subst(S), we have the equivalence M = Iul}a (glb(Conseq(M(j)),
J€

ﬁHaIt [ll(u<b_| {Ds (antec(M(k)))}], Ds (antec(M(j))))), where M is an extended

Markov algorithm over (K,9M), the lub and glb occurring in the induced lattice
structure of K in 1_.

Proof: Let M € M be an extended Markov algorithm and S ¥ Halt.
Subst(M)(S) is as defined in Definition I-II. Let m € K. Suppose that V k € K Sk
< m we have antec(M(k)) € S; but, antec(M(m)) € S. Now, V k< m Subst(Dj
(antec(M(k))))(S) = Halt but Subst(D (antec(M(m))))(S) # Halt.

Thus, if m < j, then Subst lu<bj {D; (antec(M(k)))})(S) # Halt, Subst(Dg,;;

[II(Ub {D¢ (antec(M(k)))}])(S) = Halt, and Subst(glb(Conseq(M(j)); ﬁHalt [l]‘ub
< <

{D, (antec(M(k)))}], Ds (antec(M(j)))))(S) = Halt. 1If m 2 j, then Subst ‘.lu<b: {Dg
]

(antec(M(k)))})(S) = Halt, and Sumt(ﬁffa“g‘%’ {D; (antec(M(k)))}])(S) #

J

Halt. 1f antec(M(k)) € S, then the Subst(glb(Conseq(M(j)), BHalt lu<b_ {D,
J

(antec(M(k)))}], Ds (antec(M(j)))))(S) is determined by Conseq (M(j)); other-

wise, it is Halt. Now, a greatest lower bound k, say kg, such that antec(M(ky))

€S. For each jé K such that j < ko Subst(glb(Conseq(M(j)), ﬁHa!t[ll(lg:! {Ds
J

(antec(M(k)))}], D¢ (antec(M(j)))))(S) = Halt. For each j € K such that j > ko,

then antec(M(j)) € S and Subst(Dg (antec(M(j))))(S) # Halt or antec(M(j)) € S

and Subst(D (antec(M(j))))(S) = Halt. Whenever antec(M(j)) € S Subst(glb-

(Conseq(M(j)), DHatt[llc%bj {Dg (antec(M(k))) }], Dy (antec(M(j)))))(S) would be

determined by Conseq(M(j)) except for the fact that for j > ko Substﬂl(u<l:3 {Ds
J

(antec(M(k))) })(S) # Halt and SUbSt(ﬁHalt [ll‘u<b {D, (antec(m(k)))}] )(S) = Halt;

d|
so,  Subst(glb(Conseq(M(j)), Dy [ll(u<b {D; (antec(M(k)))}], D
J
(antec(M(j)))))(S) = Halt. Now let j = ko. Substl((lét {D; (antec(M(k)))})(S) =
0
Halt, and SUbSt(BHahEEb {Ds (antec(M(k)))}])(S) # Halt; moreover,
ko

Subst(glb(Conseq(M(ko)), ﬁHﬂ”EEE {Ds  (antec(M(k)))}], D
0
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The following corollaries state that any serial addressing scheme taking on
multiple values (a multiple-valued conditional expression) can be built up from
operators (gates) of an n-valued decision algebra L in three distinct ways, and
such a scheme is a selector network. The algebra “inclusion” suggested by the
corollaries is proper (e.g. if i=1, then Co(p), C2(p) are not equivalent to any
conditional expression). Note that the Post Algebra abbreviation for = fo <f,
SRl S s &y = wor by b By T Brat 510, 1,8 can 0l
n-2}.

Corguary 1. Let x = (sy > ry,82 2> Tr2,...,Sm > I'm) be a conditional expres-
sion such that for i fixed (0 < i < n-1) val(x) = Subst(x)(i) vall(mlilm. {rg |
<ksm

-1
val(sy) = i}). Then, x = %1 (r; A {Cg[kj_Vl Ci(sk)] } A Ci(sj)), where Cy Cy,

J=
Cz,...,Cm, - - - ,Cp.1 are the unary operators of the decision algebra L.
Corollary 2. Let X =(sy 2> ry,52 2> TI2,...,Sm > Im) be a conditional expression

h for i fi <i<n-1)val(x = Subst (x)(i) val(min. {ry | val(sk) =
such that for i fixed (0 <i<n-1) val(x) (x)(i) 20 ik K

m j-1
i}). Then, x= V (g A {Co| _'_1:11 Di(s)] } A D;(sj)) where D; is defined by

=1 ]

L

n-1
Di(y) = tV=rl Ci(y). (High-modified valuation.)

Corollary 3. Let x = (s; > ry,52 > T2,...,5m ~ I';m) be a conditional expression
such that for i fixed (0 <i<n-1) val(x) = Subst(x)(i) val(min. {ry |val(sy) <1
I<k<m
m ple_ - N
}). Then, x = _v1 (r; A [Cg[kVI Di(sk)] } A Di(s;)) where D; is defined by
J: —

i

Di(y)= V_G;j(y). (Low-modified valuation.)
=0

The author wishes to thank the referees for suggestions leading to improved
presentation.
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principal ideal generated by the identity function i on the real line, we easily see
that (i) is an f-ideal which is not semiprime.

Lemma 4. If 1 is an f-ideal such that In = I for some positive integer n, then
for each f in I, there exists c in I such that f = c"x has a solution in C(X).

The proof of lemma 4 is straightforward, and hence omitted. We might re-
mark that lemma 4 remains true in general commutative rings with unity.

Lemma 5. An idempotent f-ideal I in C(X) is absolutely convex.

Proof

We first show that I is convex. It is enough to show that gin Iand 0 Sf<g
imply that f is in I. Since I? = I, we have 1 =1, so by lemma 4, there exist ¢ in I
and k in C(X) such that g = c®k. Then 0 < f < c*k implies 0 < f1/2 < c2kl/2 =
(ck}#)2. Then by lemma 1, f!/2? is a multiple of ck'/?, and hence a multiple of
c. Thus, f1/2 isin I, so fis in L.

Now to show that I is absolutely convex, it is enough to show that f in I
implies |f| in I, since I is convex. Again using lemma 4, if f is in I, there is c in I
and k in C(X) with f = c2k. Thus, |f| = ¢ |k|. Hence, |f|is in L.

Theorem 2. If 1 is an idempotent f-ideal in C(X), then I is semiprime.

Proof

We use lemma 2. Suppose f2 is in I. By lemma 4, there exist ¢ in I and k in
C(X) such that f2 = c2k. Then [f| = |c| |k|”2. Since I is absolutely convex by
lemma 5, |c| is in I since c is in 1. Hence, |f| is in 1. Therefore, f is in I since I is
convex. This proves the theorem.

Corollary 1. An ideal in C(X) is semiprime if and only if it is an idempotent

f-ideal.
Proof

This is immediate from Theorems 1 and 2, and from the easily seen fact that
semiprime ideals are idempotent.

The author is indebted to the referee for useful suggestions about this paper.
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Torsion Submodule and Injective Hull

David Cusick
Department of Mathematics
Marshall University, Huntington, West Virginia 25701

Abstract

The torsion submodule and the torsion ideal are defined. We then prove a theorem
relating these objects to the injective hull. This yields information about the injective hull of
an arbitrary ring. Finally, we prove a theorem concerning the Jacobson radical of the ring of
endomorphisms of an injective module.

The study of rings of quotients began with the familiar theorem which states
that a commutative integral domain can be embedded in a field. The proof is just
as familiar; one makes “fractions’ using the elements in the integral domain. In
more general rings this process encounters difficulties. To overcome these prob-
lems, several generalizations of quotient structure have been introduced and
studied. Some of these generalizations have, themselves, been generalized to the
study of modules. Important examples of this are the concepts of essential
extension and injective hull, which we shall consider here. Our results arose from
this ““quotient ring”’ context.

Preliminaries

Throughout this discussion R will be an associative ring which is not assumed
to have a multiplicative identity. A prefix of R before any term will denote that
the term applies when the underlying ring is R. The symbol 0 will be used for
zero elements and for zero ideals and submodules; the context will prevent
ambiguity. As usual, ker(f) will denote the kernel of the homomorphism f, and
Hompg (A,B) will denote the set of all R-homomorphisms from A into B.
Endg (A) = Homg (A,A). It is quite well-known that every R-module M can be
embedded in an injective R-module E, such that the image of M is large in E.
This module, E, is unique up to isomorphism. It is called the injective hull of M;
and we denote it by Eg (M), omitting the subscript R if the ring is clear from
context.

Let M be an R-module, let x be an element of M, and let N be an
R-submodule of M. We denote by (N:x) the set of elements r in R such that xr is
an element of N. It is well-known that (N:x) is a right ideal of R. Let N be an
R-submodule of M. We define the closure of N in M to be the set of elements x
of M such that (N:x) is large in R. We will write cl (N) if the M is obvious. A
submodule N of M is called closed in M if clyy (N) = N. It is clear that N c
cly (N). In 1964, A. W. Goldic [1] proved that cl(cl(N)) is closed. Define Zg (M)
= cly ({0}); and define Z{(M) = cly (Zg (M)), called the singular and torsion
submodules, respectively. It follows from the above Goldie’s proposition that
M/ZX(M) has a zero singular submodule (and hence, a zero torsion submodule).
In the literature, Z%(M) is usually denoted Z;(M). As before, we will drop the
subscript R if there will be no ambiguity.

These are actually R-submodules of M as their names imply. If M = R, then
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these objects are called the singular and torsion ideals since they will be two-
sided ideals of R. In fact, if I is a two-sided ideal of R, then so is clg (I). So in
particular, R/Z(R) and R/Z*(R) are both rings. Easy calculations also verify that
M - Z(R) € Z(M) and M * Z*(R) € Z*(M). Since we will be interested in
modules over R/Z*(R), we note that if I is a two-sided ideal of R, then an
R-module M is also a natural R/I-module if M * I = 0. Hence, M/Z*(M) is
naturally an R/Z*(R)-module. It can also be shown that the R/Z*(R)-torsion
submodule of M/Z*(M) is zero. In 1959, G. Azumaya [3] proved that if I is an
ideal of R, and if M is an R/I-module, then Eg/ (M) = {x €EEg(M) | xI =0}.
Thus, Eg (M) is the largest R/I-module contained in Eg (M).

Results

We begin with the following result.
Theorem: For any R-module M, the following isomorphisms hold:
Eg (M/Z*(M)) = Eg (M)/ER (Z5(M)) = Eg,z +(r) (M/Z*(M)).

Proof

Let M* = M/ZX(M), let R* = R/Z%(R), and let Z* = Z*(R). Since M* * Z*(R)
C Z*(M*) = 0, we know that M* is naturally an R*-module. Then by Azumaya’s
result, we see that Eg+(M*) C Eg (M*). To show the opposite containment, it is
sufficient to show that Z* annihilates E* = E (M*). Suppose not. Then 0 # E*
« Z* C ZX(E¥*). Therefore, 0 # M* N ZX(E*) since M* is R-large in E*. But on
the other hand, 0 = Z(M*) by Goldie’s theorem, and Z*(M*) = M* N Z*(E*)
since, in general, X C Y implies Z*(X) = X N Z*(Y). This contradiction betrays
our supposition; consequently, Z* annihilates E*, as required. This proves that
E*= ER* (M*).

To show that the second module is isomorphic to the first, we should remark
that E(Z*(M)) = Z*(E(M)). To see this, we note that Z*(E(M)) is closed in E(M),
and therefore, Z*(E(M)) is a direct summand of E(M). (See Harada (4], prop.
1.5). Thus, Z*(E(M)) is injective. Since Z*(M) = M N Z*(E(M)), we see that
Z*(M) is R-arge in Z*(E(M)). Consequently, Z* (E(M)) is the injective hull of
Z*(M), or in symbols, Z*(E(M)) = E(Z*(M)). It is clear that the other direct
summand is isomorphic to E(M)/E(Z*(M)), or equivalently, isomorphic to
E(M)/Z*(E(M)). Let E = Ex (M), and consider figure 1 a, where p is the natural
epimorphism and i is the inclusion map. Then since E(M*) is injective, we can
complete the diagram as in figure 1 b so that the completed diagram commutes.
Let K be the kernel of f. Then f(E) = E/K and M* C f(E) C E(M*); thus, by
identifying, we assume that M* C E/K C E(M*). But then these inclusions are
both R-arge since M* is R-large in E(M*). Therefore, Z(E/K) = 0 due to the fact
that 0 = Z(M*) = M* N Z(E/K). Consequently, K is closed in E since for a
general homomorphism ¢, ¢~ ! (Z(A/B)) = cla(B). The commuting diagram in
figure 1 b implies that Z*(M) = K N M. Then Z*(M) is large in K since M is large
in E. Thus, we are able to conclude that K is contained in E(Z*(M)) since
E(Z*(M)) = Z*(E(M)) is the unique injective hull of Z*(M) which is contained in
E(M) and that the containment is large. Hence, K = E(Z*(M)) since a module
which is closed in E contains all of its essential extensions which lie in E. Thus,
E/K = E/E(Z*(M)), which is injective. But since E/K was demonstrated to be
large in E(M*), we see that E/K = E(M*). Thus, E/E(Z*(M)) = E(M/Z*), com-
pleting the proof.
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Proof

It is well-known that {f € L | ker(f) is R-large in E} = J(L), the Jacobson
radical of L. Since E = Z*(E) @ E/Z*(E), it is clear that L = Endg (Z*(E)) ®
Endg (E/Z*(E)) ® Homg (E/Z*(E), Z*(E)) @ Hompg (Z*(E), E/Z*(E)); say L =
F,®F, ® F3 @ Fy for short.

But if f € F,, then f:Z*(E)>E/Z*(E). Clearly, homomorphisms take Z* into
Z*: so f(Z*(E)) C Z*(E/Z*(E)) = O, implying f = 0. Thus, F5 = 0; that is,
Homg (Z*(E),E/Z*(E)) = 0. Hence, L=F, ® F, @ Fj.

If f € F,, then we can identify f with f'=0+f+0inthe F, ® F, ® F5
representation of L. Then f'(Z*(E)) = 0. So ker(f') is large in E if and only if
ker(f) is large in E/Z*(E). But if ker(f) is large in E/Z*(E), then f(E/Z*(E)) =
Z(E[E/Z*(E)]) C Z(E/Z*(E)) = 0. By identifying f and ', we see that 0 #f E F,
implies that f is not in J(L)—that is, F, N J(L) = 0.

It is clear that for every R-module M, and for every R-homomorphism f,
clp (ker(f)) = £ [Z(f(M))], the counter-image in M of Z(f(M)). Let f € F3 and
identify f with £ = 0 + 0 + fin F; ® F; ® Fa. Let G = E/Z*(E). Then Z(£(G)) =
Z(Z*(E)) N £(G) = Z(E) N f(G) which is large in Z*(E) N £(G) = f(G). Therefore,
dg (ker(f)) = £1(Z[£(G)]), which is large in G since the counter-image of a large
submodule is also large. But 0 = Z(G) implies clearly that Z(G) C ker(f). We can
conclude that clg (ker(f)) is the maximal essential extension of ker(f) which is
contained in G since Z(M) C N implies that N is large in cly (N). Consequently,
G = clg (ker(f)) since we know that clg (ker(f)) is large in G. This, ker(f) is large
in G, showing that ker(f') is large in E. Hence, f € J(L), and F3 C J(L). More-
over, since f € F5 implies that ker(f) is large in G, we can see that f(G) C Z(E)
since B large in A implies that A/B = Z(A/B). Thus, Homg (E/Z*(E), Z*(E)) =
Hompg (E/Z*(E), Z(E)), and both are contained in J(L).

Consider Endg(Z*(E)). We have seen that Z*(E) is injective; so that
J(Endg (Z*(E))) is the set of those endomorphisms whose kernels are large in
Z*(E). We are considering Fy;so let f € F,. We identify f with ' =f +0+0, as
before. Then f has a large kernel if and only if f’ has a large kernel. To put it
another way, f € J(F,) if and only if f' € J(L). Identifying f and f', we see that f
€ J(F,) if and only if f € J(L), provided that fEF,.S0 J(F;)=J(L) N F,.

Let f = f; + f, + f3 € L, where f; € F; and the f;’s are identified canonically
and notationally with homomorphisms in L. If f(x) = 0 for some x in E, then
f,(x) = —f; (x)-f3(x). Since the left side of the previous equation is in E/Z*(E)
and the right side is in Z*(E), we know that both sides must be zero because
E/Z*(E) and Z*(E) have zero intersection. This shows that ker(f) C ker(f;). But
if f, # 0, then we know that ker(f,) is not large in E since Z(f,(E)) =0.So fE
J(L) implies that f = f; + f3. But since we have shown that F3 C J(L), we can see
that f, = f-f3 is in J(L)—which tells us that f, €J(L) N F; =J(F,). Putting all
of this together, J(L) C J(F,) @ F3. The reverse containment is clear since we
have shown that both the direct summands on the right are contained in J(L).
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and those results compared to those obtained from the t-test applied to the
transformed data. We also examined the effect sample size has on power when
there is skewness. .

The transformations studied were the expected normal scores (C,), and
ranked random normal deviates (RND). Expected normal scores entail ranking
the observations and, to the ith smallest observation, assigning the ith expected
normal score, which is obtained from special tables [Fisher and Yates, 4] . These
expected values are the means of the random normal deviates which would fall
in a certain interval depending on rank of the observation and sample size. A
chief disadvantage in using these scores is that to obtain them, tables have to be
consulted. Furthermore, the distribution from which they are chosen is not
continuous, and this violates another assumption of the parametric tests which
could be performed on these scores.

Bell and Doksum [1] suggested that ranked random normal deviates be used
instead of expected normal scores. A sample of random normal deviates is gen-
erated and ranked, and the observation with the smallest rank receives the small-
est random deviate. These deviates are much easier to obtain, and they consti-
tute a continuous distribution. There is the disadvantage that the test statistic
applied depends on the random deviates selected, which inserts another factor of
randomization or variation in the sample. The amount of variation that several
different sets of deviates could introduce and the influence of this possible
variation has not been examined empirically. However, a theoretical considera-
tion of this problem may be found in Jogdeo [6].

To investigate and examine the two transformations, many populations were
generated with different degrees of skewness. From these populations two equal
size samples were drawn. This was done for various sample sizes, and the t-test,
the t-test on the substituted expected normal scores, and the t-test on the
substituted random normal deviates were performed. The power of each was

examined, and comparisons were made to determine how skewness and sample
size affect power.

For this study sample sizes of 10, 15, 20, and 25 were selected and popula-
tion distributions chosen were chi-square distributions of 2, 4, 6, 8, 10, and 12
degrees of freedom. A parent population of 10,000 chi-square variates was gen-
erated for each distribution. From this parent population were randomly select-
ed two samples (which will be referred to as X and Y). In order to determine the
approximate power of the statistical tests it is necessary that a known difference
exist between X and Y. Therefore, constants were generated so that Pr(X>Y) =
.5, .4, .3, .2, and .1. Constants were generated in this fashion to conform with a
study done by Frush [5]. The method of generating these constants was devel-
oped by Wang [8]. The appropriate constant was then added to each element of
the Y sample creating a separation between X and Y means, and then the three
statistical tests were performed. The null hypothesis was that the X and Y
populations were identical, and the alternative hypothesis was that they were
identical except for a shift in location. For each test was counted the number of
times the null hypothesis was rejected.

The procedure described above was followed 5000 times for each constant
within each sample size for each distribution. The number of times the null
hypothesis was rejected appears in Table 1. The resulting power curves, the
constants generated, and the skewness associated with each population can be
found in Deitz [3]. In discussing the results and conclusions C; ' will refer to the
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Table 1.—Continued
Pr(X > ¥Y) = .1-65

Sample Size
10 15 20 25
No. Times|No. Times|No. Times|No. Times
Hy Rej. | Hy Rej. Hy Rej. | Hy Rej.
Dist.|Test
T 4551 4871 4950 4985
x2. ¢ | 4639 4952 4996 5000
RND'| 4576 4925 4991 4998
T 4622 4917 4983 4995
x2 - gl.| 4663 4961 4995 5000
RND'| 4608 4945 4991 5000
T 4730 4949 4992 4999
x§ c; 4725 4958 4998 5000
RND'| 4657 4949 4995 4999
T 4765 4957 4992 4994
xg e’ 4773 4973 4999 4999
RND'[ 4728 4964 4998 4999
T 4789 4974 4999 5000
x§0 ci 4783 4986 4998 5000
RND'| 4729 4975 4997 5000
T 4816 4969 4996 5000
xfz c! | 4803 4981 4998 5000
RND'| 4749 4966 4998 5000
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t-test performed on the expected normal scores and RND’ will refer to the t-test
performed on the random normal deviates.

To determine if one test was significantly more powerful than another the
sign test was performed on the powers of the three tests in two ways. Tests were
compared two at a time by counting the number of times the power of one
exceeded the power of the other. This was done by holding sample size constant
and comparing the four mean separations, as well as by holding the mean separa-
tions constant and comparing the four sample sizes. In each case, one test would
be significantly more powerful than the other only if the power of the first
exceeded that of the second in all four comparisons, or in terms of power curves,
if one curve was entirely above the other. Graphs of the power curves and tables
of the sign test may be found in Deitz [3].

The most extreme situation examined was the X%,, which has a degree of
skewness of 1.9996. As was expected because of the skewness of this distribu-
tion, not only were C;’' and RND' significantly more powerful than t but these
power differences were largest for this parent population. Since this population
is farthest from the normal of those studied, its results indicate the relative
power of the three tests in the most extreme empirical situation. These results
support the previous assertions that the power of parametric tests such as t are
low when the symmetry aspect of normal assumptions is violated. It also shows
the need for “normalizing” transformations since their power was shown to be
greater than that of t. For this degree of skewness, there is another indication of
greater power of the two tests performed on the transformed data in that their
curves plateau (or approach 1) sooner and then level off.

Examination of the distributions which were the last skewed X2 10) (12),
demonstrated that at best the t-test was as good as the C;’ and RND’ which
supports the contention that the asymptotic relative efficiency of C;' with
respect to t is greater than or equal to 1 [Chernoff and Savage, 2] .

The other distributions studied (X"'H)_‘;,}.{g}) were not as extremely skewed
as X7, and did not approach normality as closely as X%l 0),(12)- Therefore, our
main interest lies in the results obtained from these distributions.

The largest and smallest mean separation (Pr(X > Y) = .1 and .4) exhibit no
real difference in power among the three statistical tests. This could be attrib-
uted to the fact that (1) for small mean separations, it is difficult to distinguish
between two samples; and (2) large mean separations are easier to detect ir-
respective of assumptions This means there is little opportunity to affect low or
high power situations.

The other mean separations studied (Pr(X > Y) = .3 and .2) are important for
two reasons: (1) they exhibit no extreme conditions and (2) relatively little
research has been undertaken with regard to these conditions. It is hardest to
detect a power difference among the three tests for the smallest sample size (n =
10), but this could be attributed to the fact that there are not enough data
available. As sample size increases within these two probability conditions, the
difference in power of the t-test and that performed on the transformed data is
greatest. Even though the sign test indicates C;’ is significantly more powerful
than RND’, this difference is so small (and continues to decrease as sample size
increases) that it is considered, for all practical purposes, unimportant. When
sample size reached 25, all three tests demonstrated large powers and small
power differences. This was expected for large sample size increases the power of
most tests.

It can be concluded that C;’ and RND' are significantly more powerful than t
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for skewed distributions, which supports the assertion that transformation is
desirable for data from a skewed distribution. These results would tend to indi-
cate that data with a degree of skewness 2> 1.0 should be transformed by expect-
ed normal scores or random normal deviates. Even though C,’ is significantly
more powerful than RND' in several cases, the difference in power is so small
that the two tests may be considered equal. Thus, the more convenient RND' is
recommended. The RND' test is much easier to perform since tables do not have
to be used to transform the data, and normal deviates can be generated by
computers with minimum effort.

Certain questions were raised by the methods employed in this study. One
such question is that a t-test was performed on the transformed data instead of
the normal scores test as defined by Terry [7], but results were discussed as if
the conventional Cj-test had been performed. This can be justified by the fol-
lowing reasoning: The t-test applied to data which have been transformed by
expected normal scores is a strictly increasing function of the normal scores
C,-test. This implies that if the null hypothesis is rejected by performing a t-test,
it would also have been rejected if the C;-test had been performed.

Another important question to consider in evaluating the results of this study
is how close the empirical power of the tests is to the true power. The probabili-
ty of approximating the true power of the statistical test within a given bound
and for a given number of times the test was performed can be determined in the
following manner. For a given test procedure assign a value of 1 if the null
hypothesis was accepted, thus producing a Bernouli variable. Therefore, how
close X/N (N = number of times the test was performed) is to the true probabili-
ty, within some interval, is given by

Pr( -¢ < ——— ¢ ¢) » N(0,1)
/Np(1-p)

<Pr(—bi£-pf_b) where b = ——

& T
Solving for € gives € = 2bJN. To evaluate the above interval and thereby

obtain the desired probability, N and b must be specified. For our stud}kN was
5000. A b of 0.013 yields a probability of 0.9426. That is, Pr(-0.013 < NP <

0.013) = .9426 or the probability of the power obtained from empirical results
is within :0.013 of the true power of the test. The cases of interest exhibited
power differences greater than 0.013.

Finally, we mention the work of Jogdeo [6], who has shown that the power
of the Bell and Doksum Randomized Rank Scores procedures remains bounded
away from unity for the entire parameter space of the alternative hypothesis.
That is, the effect of the superimposed noise created by the additional sample
which was employed in the test creates undesirable properties of the test. Our
simulation has shown this concern to be of no practical consequence, for the
empirical power of the RND' test is very close to 1 in several cases and is equal
to 1 in three cases.
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Open Sets From Disjoint Closed Intervals

Michael Mays
John Schleusner
William Simons
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West Virginia University, Morgantown, West Virginia 26506

Abstract

In this paper we show by several different arguments that no open subset of the real line
can be written as a union of disjoint closed subintervals unless uncountably many of the
subintervals contain only one point.

Most texts concerned with general topology contain the theorem which states
that each open subset of R, the real line, is the union of disjoint open intervals.
Nevertheless, it seems difficult to find any reference for conditions under which
an open subset of R can be the union of disjoint closed intervals. In this note we
present such conditions.

If any open set O C R is the union of disjoint closed intervals, then so is each
component of O. Conversely, if any open interval is the union of disjoint closed
intervals, then so is every open subset. Hence for our purposes, it suffices to
consider the open interval (0,1).

Let Ja = {la | In = [2aq, ba) C (0,1), @ € A} be a disjoint family of closed
intervals. We will write I <18 to mean Iq is to the left of Ig on R.

Theorem 1. If each 1& € J o contains at least two points, then U Iy i (0,1).
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On the Maximum Modulus for
Meromorphic Univalent Functions

James Miller
Department of Mathematics
West Virginia University, Morgantown, West Virginia 26506

Abstract

We use a variational formula for a class of univalent meromorphic functions to determine
the form of the extremal function that maximizes the modulus in that class.

Introduction

Let S(p) denote the class of all functions f(z) = z + azz? +...that are
analytic, except for a pole at z = p, and univalent in the unit disc E. Fenchel [1]
obtained what Komatu [3] called a ‘“‘distortion theorem”, that is, the following
inequalities:

(1) 1£)] > 2lzl B el
p + (1+p°) |z| + p|z]

and, if |a2| > 2!
(2) | £(z)| < E1 g
14 layl lzl = ol
2
: |a,|
which holds for —é—-laal - e < |z| <1.
Ly

The inequality (1) is attained by the function

PZ
fo(z) =

p—(132+l)z+1:>z2

However, neither the actual maximum nor the form of the extremal function,
related to (2), are known.

In this paper we take a first step to complete this study by using a variational
formula for the class S(p) to determine the form of the function in S(p) which

maximizes the functional F(f) = |f(zo)|. The variational formula was developed
in [4].
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Constitutive Properties of Brain Tissue

M. R. Pamidi and S. H. Advani
Department of Mechanical Engineering and Mechanics
West Virginia University, Morgantown, West Virginia 26506

Abstract

Biological tissues, in general, exhibit non-linear viscoelastic behavior. This paper is con-
cerned with the formulation of constitutive relations governing brain tissue. Essentially two
methods for describing brain tissue properties are presented. First, the existing strain cnergy
representations for finite deformations of elastic materials are modified to include time
dependent material response. Second, the classical Boltzmann Integral form is refined by
including a cubic strain functional in the kernel. In both cases, the material relaxation
function is assumed to have the conventional exponential form. The mathematical model
predictions are compared to experimentally determine in vitro properties of human brain
tissue.

Introduction

Numerous studies have been devoted in recent times to the mechanical and
acoustical characterization of the properties of biological tissues. Motivated by
the fact that the response of materials can be deduced from a potential function
(strain energy function), many studies have been directed at the derivation of
constitutive relations from this quantity. Examples of these studies include re-
search by Fung [7,8], Hildebrandt et al [14], Gottenberg et al [10], Smith
[26], Patel and Vaishnav [19], Gou [11], Simon et al [25] , Demiray [4], Haut
and Little [13], Blatz et al [3] and Snyder [27]. A perusal of these works
reveals, however, that most of the theories developed involve application of
finite elasticity theory using strain invariants rather than a viscoelastic repre-
sentation which should include the strains, their time history and possibly strain
rates. In addition, even the strain energy forms that have been established have
been tested for a specific loading pattern.

This work is based on the idea of the existence of a mechanical equation of
state for a continuum relating deformation or its time rate, stress and time for
isothermal processes. Such an idea for metals has been advanced by Vorotnikov
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and Novinskii [28], Nadai [17], Zener and Holloman [30] and Holloman [15],
although conflicting data have been obtained by Dorn et al [5], Johnson et al
[16] and Orowan [18]. Since the present investigation is based on a continuum
macroscopic approach, it appears logical that energy and polynomial constitutive
representations apply to brain also.

At first glance, it may appear from the above arguments that attempts to
describe the behavior of a material by a single simple equation of state with the
same parameters are unlikely to succeed. The behavior of a material under
different types of tests can be described by a generalized equation, but the
parameters of this equation will have different numerical values for each individ-
ual type of test, reflecting the particular physical conditions prevailing during
stress relaxation, creep, uniaxial strain, etc. However, in the sequel, a strain
energy form is established which correlates uniaxial relaxation tests, constant
strain-rate tests and dynamic torsion tests within reasonable limits.

Governing Equations

From the point of view of an engineering material, brain tissue is assumed to
be isotropic, homogeneous and incompressible. Isotropy is based on microscopic
studies [24] and homogeneity on the fact that the test specimens consist mostly
of white or grey matters. Because of its high bulk modulus of 305,300 psi [29]
and low shear modulus [24], incompressibility is justified. With these prelimi-
naries, we can now formulate constitutive relations by two different methods.
(a) Uniaxial Tests

i) Strain Energy Approach: The conventional constitutive relation 0ij =
0W/dEij must be modified in view of the inclusion of strain rates in W. Consider,
then, a continuum with kinetic energy density Wz W(a,, 40 strain energy density

W= W(Qkﬂik] and external work W = t qx, where q, and qy are generalized

coordinates, t, the generalized forces and p the continuum density. The Lagran-
gian is L=T-(W-W) and Hamilton’s principle reads

t t
I‘L dv Jt = JI [T"(W‘wn)] JV Jt =0
£, 1,

Consequently, Euler-Lagrange equation yields

4t L
g,

where L= fq,:: /2 "w(‘h".}k) + 1 Qg

Thus, in the absence of inertia forces, one finally obtains

fo- W _d W
¥k dt HK

If the generalized coordinates are strains and their time rates, we have the
‘engineering’ stresses as
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Some Observations on the Effect of Ultrasonics
on the Solidification of Nodular Cast Iron

Harold V. Fairbanks and John F. Dakan
Department of Chemical Engineering
West Virginia University, Morgantown, West Virginia 26506

Abstract

The purpose of this investigation was to determine the influence the addition of ultra-
sonic energy into nodular cast iron during solidification would have upon the structure and
resulting physical properties of the metal. A factorially designed set of experiments were run
using ultrasonic intensity and the amount of alloy additions as the variables.

It was found that ultrasonic radiation retarded the decomposition of iron carbide, There-
fore, the greater the ultrasonic intensity the harder the nodular cast iron produced. It was
found that the addition of ultrasonic energy produced a small decrease in the nodular size.
With an ultrasonic intensity of 120 watts for a one inch diameter cross-section there was a
substantial increase in the number of graphite nodules per unit area formed.

Introduction

It is a well known fact that the application of ultrasonic radiation to molten
metals during solidification is capable of reducing the grain size of the metal. It
is also known that a fine dispersion of one solid phase in another can greatly
improve the strength and quality of a metal.

Inasmuch as nodular cast iron is composed of a dispersed phase of spherical
graphite particles in an iron matrix, it was conjectured that the application of
ultrasonics during the formation of the spherical graphite particles could result
in producing favorable mechanical properties.

Metkod and Materials

A factorially designed set of experiments were run using different ultrasonic
intensities at a frequency of 20 kHz along with varying amounts of the
magnesium-nickel alloy additive which aids in the production of the spherical
nodular type of graphite in cast iron. The various levels of ultrasonic intensity

and alloy additions used are given in Table 1.
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Table I. Experimental Designs

Variables Levels
Mg-Ni additions

(#/ton) 17%, 20, 25
Ultrasonic intensity

in watts 90, 120, 150

A vertical sand mold was used for casting a one inch in diameter test bar eight
inches long. A steel rod was attached to the end of the ultrasonic horn and the
free end of the steel rod was immersed approximately one-half inch beneath the
top surface of the molten iron. The ultrasonics were applied during the solidifi-
cation period of the iron. Figure 1 shows a schematic sketch of the apparatus
used.

The alloy additions were made to the iron in the ladle just prior to pouring
into the test mold. The analysis of the cast iron used is given in Table II.

Table II. Analysis of Cast Iron

Element Per Cent
Carbon 3.71
Silicon 2.70
Manganese 0.36
Phosphorus 0.038
Sulfur 0.015

After solidification the bars were cross-sectioned and Brinell hardness tests
made. A sample taken near the top of the test bar was polished for microscopic
examination. The average size and distribution of the nodular graphite particles
was determined.

Results and Discussion

Figure 2 shows both polished and etched samples taken from ultrasonically
treated and untreated test bars. It can be seen that some decrease in nodular size
was produced by the application of ultrasonic radiation during solidification of
the cast iron. Also it can be seen in the ultrasonically treated and etched sample
that some undecomposed iron carbide remained in the cast iron structure.

Figure 3 shows the effect of ultrasonic intensity upon the resulting hardness
of the nodular cast iron. The greater the ultrasonic intensity, the harder the
nodular cast iron produced. This result is directly related to the fact that ultra-
sonics retarded the decomposition of iron-carbide which is a very hard material.

Figure 4 shows the effect of ultrasonic intensity had on the size of the
nodular graphite. There was a small decrease in graphite particle size due to
ultrasonic radiation but not as great as had been conjectured.

Figure 5 gives the results of ultrasonic intensity upon the number of graphite
particles per square millimeter. For the system used, it appears that 120 watts of
ultrasonic power produced the maximum number of graphite particles. This may
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FIGURE 2. Photomicrographs comparing the morphology of ultrasonically treated metal
with untreated metal. The photomicrographs on the right show the ultrasonically treated
metal. The upper two photomicrographs are of polished samples, while the lower two
photomicrographs are of polished and etched samples. The etchant used was Nital. The long
white sections shown in the lower right photomicrograph is undecomposed iron carbide.
The dark round particles is ferrite. Magnification of the photomicrographs is 100X.
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FIGURE 2. Core-Drilled Cylinder.

problems obtained by considering Figure 3 as a cross-section view of either a flat
(plane stress) or infinitely thick (plane strain) body in the Z direction. Further-
more, no such solutions are presented here. However, much work has been done
on similar, related problems, and by using the results of this work it is possible

to extract quantitative as well as qualitative information about the solutions of
the foregoing problems.

Specifically Klemm (3) indicates that the solution of the first problem is
directly related to the *“decay theories” emanating from St. Venant’s Principle.
The work of Knowles and Horgan (4) and of Timoshenko (5) substantiates this.
Indeed the work of Knowles and Horgan (4) suggests that a close approximation
to the solution of the first problem is:

Op = Oge-kV/R (1)
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Experimental Analysis

Just as with the theoretical problems above there is very little experimental
work available which can be related directly to these problems. Hence, it is
difficult to obtain an experimental check of Equation (3). One reason for this is
that most experimental work is restricted to two-dimensional analyses. However,
even the associated two-dimensional problems have not received extensive atten-
tion of experimental investigations. The work that is available, however, does
validate Equation (3). Specifically, the work of Yang (6) provides a good ap-
proximation to the results of Equation (3). The results in Faupel (1) are also
helpful.

In spite of this apparent confirmation, there exists a need to have further
experimental confirmation. To partially fill this need the following experiment
was conducted: A 1/8 inch thick 2 x 10 inch flat plastic bar containing two
parallel slots was placed in tension as depicted in Figure 4. Using the methods of
reflective photoelasticity the model’s isoclinics were obtained as shown in Figure
5. The axial stress distribution measured across the center of the bar is shown in
Figure 6.

These results also confirm the theoretical analysis—especially the exponential
distribution in the core region. However, these results like the others are two-
dimensional in nature. More work—especially three-dimensional analyses are
needed. These are planned in future research.

Conclusions and Application

To summarize: the principle result of this study is a new procedure for
strain-gauge measurement of interior stress. It is based upon the principle of
residual stress relief using the core drilling technique. The theoretical basis is
summarized by Equation (3) which relates the interior stress to the directly
measured (strain-gauge) stress on top of the cylinder. Finally, this equation while
developed analytically, is verified experimentally.

This result thus greatly extends the versatility of the strain-gauge as an experi-
mental technique. There are several limitations, however, which should also be
noted: First, Equation (3) is most accurate when y is ‘“small.” That is, by St.
Venant’s principle, Equation (3) is valid only if y/R is somewhat less than 2. In
many cases this difficulty may be overcome by simply making R large. Next, the
procedure provides the stress only along the normal to the surface at one point.
To obtain the stress distribution along several normals, one needs to drill several
cores. Finally, the method is destructive. Therefore, it will probably be most
useful in determining design stresses in large production items. This application
has the further advantage of predicting *‘safe’” or “‘conservative’ stresses. That is,
Equation (3) provides a larger-than-actual measure of the stress.
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subject to homogeneous boundary conditions is approximated by

Y= - ®
where the u;’s are a set of functions satisfying the boundary conditions. Thf.se
are called the basis functions. A summation convention is used so the right side
of eq. 5 is a sum of N terms. Because of the linearity, the residual is given by

'n =€V (6
where
v;=(P+AQ)u;. (7

Weighted residual methods obtain a set of N linear equations for the ¢;'s by
introducing a set of N weight functions w; and requiring

J& wiry dx=0. (8

The condition for the existence that the determinant of the coefficients of
the set of algebraic equations vanish, gives an equation for the eigenvalues.

Collocation corresponds to taking the w;'s as a set of Dirac delta functions so
that the elements of the determinant are

dii =PUj+hQI.1j [x=xi. (9

The method of subdomains divides the range 0-1 into N strips and take w; as 1
in the ith strip, 0 elsewhere. Galerkin’s method is based on

w; = ;. (10
In all three methods the elements of the determinant are linear in A so the

determinant corresponds to a polynomial of degree N in A.
The method of least squares is based on minimizing

e e dx.

The equation obtained by setting the partial derivatives with respect to the c’s
cqual to zero correspond to eq. 8 with

Wi = V. (11
In this case the elements of the determinant are quadratic in A so the determi-

nant corresponds to a polynomial of degree 2N in A. It turns out that the roots

are double roots. As this complicates the numerical solution, this method was
not included in the calculations.

Numerical Results

A PL/1 computer program (available on request) was written which computes
the elements of the determinant and then finds the zeros. The calculation of the
determinant elements is easily modified to use any of the three methods or to
handle other differential equations. Since multiplying out the determinant is
laborious, the determinant is treated as a function of A and the roots found by
using an adaptive scanning procedure (5) to locate changes of sign in a specified
range and then a combination of the secant rule and bisection is used to find the
zero to a specified tolerance. This procedure does not require evaluation of
derivatives which is rather difficult for determinants.

Table 1 compares the values of the first two eigenvalues obtained by the three
methods using

uj=l-sz (12
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Cancer-Lymphocyte Interaction Analysis as a Problem in
Differential Game Theory

Alvin M. Strauss
Department of Engineering Analysis
University of Cincinnati, Cincinnati, Ohio 45221

Abstract

Gurel in references [4] through [8] was the first to conclude, on the basis of results
obtained by phase photomicrography of the motion of lymphocytes around and non-
neoplastic and cancerous cells, that there exists an unstable biodynamic field in and around
a cancerous cell. Particles that lic in the influence region of each individual cancer cell are
affected by this field. Although attempts have been made to describe the cause of this field
by Gurel the analysis concerns itself with the phenomenological theory of the cancer-
lymphocyte interaction systems.

In this paper the interaction of cancer cells and lymphocytes is described within the
framework of differential game theory. In this formulation we scck first to find the Nash
equilibrium point where cancer cells and lymphocytes both try to optimize their payoffs
irrespective of what the other is doing, but where neither will be able to unilaterally increase
its payoff by changing its strategy.

Next, the transition is made to actual clinical problems by formulating the theory in
terms of a multistage, discretetime, stochastic differential game model. The biodynamic
field is assumed to be the mechanism whereby the cancer cell develops immunity to attack
by lymphocytes. Thus, the cancer ccll attempts to maximize its immunity and hence to
maximize its biodynamic field. The lymphocyte, on the other hand, seeks to destroy the
cancer cell and hence to minimize the effects of the field. The dynamics of this system is
described by a set of linear difference equations. The effect of chemotherapy on this system
is described where the chemotherapy is taken to be an independent noise sequence.
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