Identification and Characterization of Fungi Isolated from a Cheese Cave in the Eastern United States

Authors

  • Alex Banks Shepherd University
  • Emily Behrmann Shepherd University
  • Laura Robertson Shepherd University

DOI:

https://doi.org/10.55632/pwvas.v95i3.1018

Keywords:

indoor fungi, cheese fungi, Penicillium

Abstract

Fungal spores are ubiquitous in indoor air, with the diversity of species geographically variable.  Species present depend upon outdoor sources, physical conditions of the built environment, and human use of the built environment.  Cheese is a microbial product produced through inoculation of milk with specific fungal and bacterial cultures.  Indigenous fungi can also impact cheese flavor and quality.  While there are studies investigating the microbiome of cheese and starter cultures, there are not many studies investigating the airborne fungal community in cheese caves.   This study investigated the viable airborne fungi present in a man-made cheese cave in the Eastern United States.  Fungi were captured passively on both general culture media and milk-based media using the open plate method.  Thirty-one isolates were identified to genus by sequence of the nuclear ribosomal internal transcribed spacer (ITS) region.  Most of the isolates were cheese-associated taxa: Penicillium (26 isolates) and Scopulariopsis (1 isolate). The only other taxon identified was Cladosporium (4 isolates), which is commonly isolated in surveys of both indoor and outdoor air and has been isolated from cheese.  The airborne Penicillium-Fasciculata isolates captured from the cheese cave exhibit growth traits (conidiation, increased growth on malt extract media, and loss of casein hydrolysis) more similar to wild Penicillium fungi than the domesticated commercial cheese strain Penicillium candidum.

Author Biography

Laura Robertson, Shepherd University

Biology Department

Associate Professor

References

Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME Journal, 7(7), 1262–1273. https://doi.org/10.1038/ismej.2013.28

Bensch, K., Groenewald, J. Z., Meijer, M., Dijksterhuis, J., Jurjević, Andersen, B., Houbraken, J., Crous, P. W., & Samson, R. A. (2018). Cladosporium species in indoor environments. 89, 177–301. https://doi.org/10.1016/J.SIMYCO.2018.03.002

Beresford, T. P., Fitzsimons, N. A., Brennan, N. L., & Cogan, T. M. (2001). Recent advances in cheese microbiology. International Dairy Journal, 11(4–7), 259–274. https://doi.org/10.1016/S0958-6946(01)00056-5

Boutrou, R., & Guéguen, M. (2005). Interests in Geotrichum candidum for cheese technology. International Journal of Food Microbiology, 102(1), 1–20. https://doi.org/10.1016/j.ijfoodmicro.2004.12.028

Dieuleveux, V., Van Der Pyl, D., Chataud, J., & Gueguen, M. (1998). Purification and Characterization of Anti-Listeria Compounds Produced by Geotrichum candidum. Applied and Environmental Microbiology, 64(2), 800. https://doi.org/10.1128/AEM.64.2.800-803.1998

Flannigan, B., Samson, R. A., & Miller, J. D. (Eds.). (2011). Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control (Second). CRC Press. https://doi.org/https://doi.org/10.1201/b10838

Fradkin, A., Tarlo, S. M., Tobin, R. S., Tucic-Porretta, M., & Malloch, D. (1987). Species identification of airborne molds and its significance for the detection of indoor pollution. JAPCA, 37(1), 51–53. https://doi.org/10.1080/08940630.1987.10466201

Garnier, L., Valence, F., & Mounier, J. (2017). Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms, 5(3). https://doi.org/10.3390/microorganisms5030042

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. https://www.academia.edu/download/29520866/1999hall1.pdf

Janssen, R. H. H., Heald, C. L., Steiner, A. L., Perring, A. E., Alex Huffman, J., Robinson, E. S., Twohy, C. H., & Ziemba, L. D. (2021). Drivers of the fungal spore bioaerosol budget: Observational analysis and global modeling. Atmospheric Chemistry and Physics, 21(6), 4381–4401. https://doi.org/10.5194/ACP-21-4381-2021

Kandasamy, S., Park, W. S., Yoo, J., Yun, J., Kang, H. B., Seol, K.-H., Oh, M.-H., & Ham, J. S. (2020). Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea. Asian-Australasian Journal of Animal Sciences, 33(6), 1002–1011. https://doi.org/10.5713/ajas.19.0553

Kure, C. F., & Skaar, I. (2019). The fungal problem in cheese industry. Current Opinion in Food Science, 29, 14–19. https://doi.org/https://doi.org/10.1016/j.cofs.2019.07.003

Lee, B. G., Yang, J. I. L., Kim, E., Geum, S. W., Park, J. H., & Yeo, M. K. (2021). Investigation of bacterial and fungal communities in indoor and outdoor air of elementary school classrooms by 16S rRNA gene and ITS region sequencing. Indoor Air, 31(5), 1553–1562. https://doi.org/10.1111/INA.12825

Li, D.-W., & Kendrick, B. (1995). A year-round comparison of fungal spores in indoor and outdoor air. Mycologia, 87(2), 190–195. https://doi.org/10.1080/00275514.1995.12026520

Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., Cardinali, G., Crous, P. W., Druzhinina, I. S., Geiser, D. M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., … Schoch, C. L. (2020). Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus, 11(1), 24. https://doi.org/10.1186/S43008-020-00033-Z

Martin, J. G. P., & Cotter, P. D. (2023). Filamentous fungi in artisanal cheeses: A problem to be avoided or a market opportunity? Heliyon, 9(4), e15110. https://doi.org/10.1016/j.heliyon.2023.e15110

Nevalainen, A., Täubel, M., & Hyvärinen, A. (2015). Indoor fungi: Companions and contaminants. Indoor Air, 25(2), 125–156. https://doi.org/10.1111/INA.12182

Ren, P., Jankun, T. M., & Leaderer, B. P. (1999). Comparisons of seasonal fungal prevalence in indoor and outdoor air and in house dusts of dwellings in one Northeast American county. Journal of Exposure Analysis and Environmental Epidemiology, 9(6), 560–568. https://doi.org/10.1038/sj.jea.7500061

Ropars, J., Cruaud, C., Lacoste, S., & Dupont, J. (2012). A taxonomic and ecological overview of cheese fungi. International Journal of Food Microbiology, 155(3), 199–210. https://doi.org/10.1016/J.IJFOODMICRO.2012.02.005

Ropars, J., Didiot, E., Rodríguez de la Vega, R. C., Bennetot, B., Coton, M., Poirier, E., Coton, E., Snirc, A., Le Prieur, S., & Giraud, T. (2020). Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties. Current Biology, 30(22), 4441-4453.e4. https://doi.org/10.1016/j.cub.2020.08.082

Salque, M., Bogucki, P. I., Pyzel, J., Sobkowiak-Tabaka, I., Grygiel, R., Szmyt, M., & Evershed, R. P. (2012). Earliest evidence for cheese making in the sixth millennium bc in northern Europe. Nature 2012 493:7433, 493(7433), 522–525. https://doi.org/10.1038/nature11698

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J., Aime, M. C., An, K. D., Bai, F. Y., Barreto, R. W., Begerow, D., Bergeron, M. J., Blackwell, M., … Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6241–6246. https://doi.org/10.1073/PNAS.1117018109/SUPPL_FILE/SD01.XLS

Shelton, B. G., Kirkland, K. H., Flanders, W. D., & Morris, G. K. (2002). Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 68(4), 1743–1753. https://doi.org/10.1128/AEM.68.4.1743-1753.2002

Steensels, J., Gallone, B., Voordeckers, K., & Verstrepen, K. J. (2019). Domestication of Industrial Microbes. Current Biology, 29(10), R381–R393. https://doi.org/10.1016/j.cub.2019.04.025

Visagie, C. M., Hirooka, Y., Tanney, J. B., Whitfield, E., Mwange, K., Meijer, M., Amend, A. S., Seifert, K. A., & Samson, R. A. (2014). Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology, 78, 63–139. https://doi.org/10.1016/j.simyco.2014.07.002

Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78(1), 343–371. https://doi.org/10.1016/J.SIMYCO.2014.09.001

Woudenberg, J. H. C., Meijer, M., Houbraken, J., & Samson, R. A. (2017). Scopulariopsis and scopulariopsis-like species from indoor environments. 88. https://doi.org/10.1016/J.SIMYCO.2017.03.001

Downloads

Published

2023-07-06

How to Cite

Banks, A., Behrmann, E., & Robertson, L. (2023). Identification and Characterization of Fungi Isolated from a Cheese Cave in the Eastern United States. Proceedings of the West Virginia Academy of Science, 95(3). https://doi.org/10.55632/pwvas.v95i3.1018

Issue

Section

Research Articles