Symmetry Equivalents of the Weak Value Measurement Pointer Hamiltonian

Authors

  • Allen Parks Retired US navy research scientist

DOI:

https://doi.org/10.55632/pwvas.v96i2.1100

Abstract

Quantum mechanical weak values and their measurement have been a focus of theoretical, experimental, and applied research for more than two decades. The concept of PT symmetry was also introduced into quantum mechanics during this time. This paper defines the notion of a weak value measurement pointer Hamiltonian and establishes equivalences between its Dirac symmetries, its PT symmetries, its eigenvalues, and the associated weak value. The affect of these symmetries upon measurement pointer observables is also identified.

References

Aharonov, Y. D. Albert, A. Casher, and L. Vaidman. 1986. Novel properties of preselected and postselected ensembles in D. Greenberger (ed.), New Techniques and Ideas in Quantum Measurement Theory, pp. 417-421. New York Academy of Science.

Aharonov, Y., D. Albert, and L. Vaidman. 1988. How the result of a measurement of a component of the spin of a spin-1⁄2 particle can turn out to be 100. Phys. Lett. 60: 1351-1354.

DOI: 10.1103/PhysRevLett.60.1351

Aharonov, Y. and L. Vaidman. 1990. Properties of a quantum

system during the interval between two measurements.

Phys. Rev. A 41(1): 11-20.

DOI: 10.1103/PhysRevA.41.1107

Ritchie, N., J. Story, and R. Hulet. 1991. Realization of a

measurement of a “weak value”. Phys. Rev. Lett. 66(9):

-1110.

DOI: 10.1103/PhysRevLett.66.110

Parks, A., D. Cullin, and D. Stoudt. 1998. Observation and

measurement of an optical Aharonov-Albert-Vaidman

effect. Proc. R. Soc. Lond. A 454: 2997-3008.

Resch, K., A. Steinberg. 2004. Extracting joint weak values with

local single particle measurements. Phys. Rev. Lett. 92(13):

DOI: 10.1103/PhysRevLett.92.130402

Wang, Q., F. Sun, Y. Zhang, J. Li, Y. Huang, and G. Gao. 2006. Experimental demonstration of a method to realize weak measurement of the arrival time of a single photon. Phys. Rev. A 73(2): 023814.

DOI: 10.1103/PhysRevA.73.023814

Hosten, O. and P. Kwiat. 2008. Observation of the spin Hall effect of light via weak measurements. Science 319: 787-790.

DOI: 10.1126/science.1152697

Yokota, K., T. Yamamoto, M. Koashi, and M. Imoto. 2009. Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11: 033011.

DOI: 10.1088/1367-2630/11/3/033011

Dixon, P., D. Starling, A. Jordan, and J. Howell. 2009. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102: 173601.

DOI: 10.1103/PhysRevLett.102.173601

Parks, A., and S. Spence. 2016. Comparative weak value amplification as an approach to estimating the value of small quantum mechanical interactions. Metrol. Meas. Syst. 23: 393-401.

DOI: 10.1515/mms-2016-0035

Spence, S., and A. Parks. 2017. Experimental evidence for retro-causation in quantum mechanics using weak values. Quantum Stud. Math. Found. 4: 1-6.

DOI: 10.1007/s40509-016-0082-x

Bender, C., and S. Boettcher. 1998. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 80: 5243-5246.

DOI: 10.1103/PhysRevLett.80.5243

Bender, C., S. Boettcher, and P. Meisinger. 1999. PT -symmetric quantum mechanics. J. Math. Phys. 40: 2201-2229.

DOI: 10.1063/1.532860

Longhi, S. 2010. Optical realization of relativistic non-Hermitian quantum mechanics. Phys. Rev. Lett. 105: 013903.

DOI: 10.1103/PhysRevLett.105.013903

Chtchelkatchev, N., A. Golubov, T. Baturina, and V. Vinokur. 2012. Stimulation of the fluctuation superconductivity by PT symmetry. Phys. Rev. Lett. 109: 150405.

DOI: 10.1103/PhysRevLett.109.150405

Hang, C., G. Huang, and V. Knontop. 2013. PT symmetry with a system of three-level atoms. Phys. Rev. Lett. 110: 083604.

DOI: 10.1103/PhysRevLett.110.083604

Wu, Y., W. Liu, J. Geng, X. Song, X. Ye, C. Duan, X. Rong, and J. Du. 2019. Observation of parity-time symmetry breaking in a single-spin system. Science 364: 878-880.

DOI: 10.1126/science.aaw8205

Benisty, H., A. Degiron, A. Lupu, A. De Lustrac, S. Chenais, S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and G. Lerondel. 2011. Implementation of PT symmetric devices using plasmonics: principle and applications. Optics Express 19: 18004-18019.

Feng, L., Y. Xu, W. Fegadolli, M. Lu, J. Oliveira, V. Almeida, Y. Chen, and A. Sherer. 2012. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nature Materials 12: 108-113.

DOI: 10.1038/NMAT3495

Pati, K., U. Singh, and U. Sinha. 2015. Measuring non-Hermitian operators via weak values. Phys. Rev. A 92: 052120.

DOI: 10.1103/PhysRevA.92.052120

Parks, A. and S. Spence. 2017. An observed manifestation of a parity symmetry in the backward in time evolved post-selected state of a twin Mach-Zehnder interferometer. Quant. Stud.: Math. Found. 4: 315-322.

DOI: 10.1007/s40509-017-0106-1

Josza, R. 2007. Complex weak values in quantum measurement. Phys. Rev. A 76: 044103.

DOI: 10.1103/PhysRevA.76.044103

Parks, A. and J. Gray. 2011. Variance control in weak-value measurement pointers. Phys. Rev. A 84: 012116.

DOI: 10.1103/PhysRevA.84.012116

Downloads

Published

2024-06-04

How to Cite

Parks, A. (2024). Symmetry Equivalents of the Weak Value Measurement Pointer Hamiltonian. Proceedings of the West Virginia Academy of Science, 96(2). https://doi.org/10.55632/pwvas.v96i2.1100

Issue

Section

Research Articles